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GENERAL SUMMARY 

POST-FIRE DYNAMICS OF GROWTH AND STRUCTURE IN MIXED 

CONIFER FORESTS OF NORTHERN MEXICO 

Fire is one of the most important disturbances for fire-dependent ecosystems and 
drives the patterns of vegetation structure and composition. The objective of this 
study was to characterize the structural dynamics of a mixed conifer forests of the 
Sierra Madre Occidental (SMO) affected by fires. Vegetation was sampled at 
three fire severity levels: high, moderate, and low, and the unburned level was 
included as a control. Species richness (S), Shannon index (H), and the Evenness 
index (E) were calculated. The diameter-size class and height class of the trees 
were determined by applying the indices H, and E indexes and the coefficient of 
variation (CV). Differences in the indices calculated across fire severity levels 
were determined by analysis of variance (ANOVA) and Tukey's multiple 
comparison tests. Results showed no significant differences (p ≤ 0.05) in species 
diversity indices among fire severity levels; however, diameter and height classes 
were lower in areas affected by high-severity fire. Increment cores and cross-
sections of fire-scarred trees were also collected and analyzed using 
dendrochronological techniques to generate tree ages and descriptive statistics 
involved in fire history studies. Synchrony between fire history and tree 
establishment was determined, and climatic data values were correlated with the 
number of trees established per year. Forty-one fire events were reconstructed 
over the period 1855-2019. Overall, the mean fire interval (MFI) was 2.28 years 
and 12.17 years for large fires. The number of trees established per year was 
influenced by the prevailing dry conditions in September and October of the 
previous year and the wet conditions that occurred in December of the same year. 
These results constitute an example of forest response to fire severity and its 
historical behavior and may support further studies related to the influence of fire 
on other forest communities present in the SMO. 

Keywords: fire severity, fire frequency, dendrochronology, fire scars, tree 
recruitment, species composition. 

 



Doctorado en Ciencias en Recursos Naturales y Medio Ambiente en Zonas Áridas 
Author: José Manuel Zúñiga Vásquez 
Under the supervision of: José Villanueva Díaz, Ph.D.  

xv 

RESUMEN GENERAL 

DINÁMICA POST-INCENDIO DEL CRECIMIENTO Y ESTRUCTURA EN 

BOSQUES MEZCLADOS DE CONÍFERAS DEL NORTE DE MÉXICO 

El fuego es una de las perturbaciones más importantes para los ecosistemas 
dependientes del fuego y determina los patrones de estructura y composición de 
la vegetación. El objetivo de este estudio fue caracterizar la dinámica estructural 
de un bosque mixto de coníferas de la Sierra Madre Occidental (SMO) afectado 
por incendios. La vegetación se muestreó en tres niveles de severidad del fuego: 
alto, moderado y bajo, y el nivel no quemado se incluyó como control. Se calculó 
la riqueza de especies (S), el índice de Shannon (H) y el índice de uniformidad 
(E). La clase diámetro-tamaño y la clase altura de los árboles se determinaron 
aplicando los índices H, E y el coeficiente de variación (CV). Las diferencias en 
los índices calculados a través de los niveles de severidad del fuego se 
determinaron mediante análisis de varianza (ANOVA) y pruebas de comparación 
múltiple de Tukey. Los resultados no mostraron diferencias significativas (p ≤ 
0.05) en los índices de diversidad de especies entre los niveles de severidad del 
fuego; sin embargo, las clases de diámetro y altura fueron menores en las áreas 
afectadas por incendios de alta severidad. También se recopilaron y analizaron 
núcleos incrementales y secciones transversales de árboles con cicatrices de 
incendios utilizando técnicas dendrocronológicas para generar edades de los 
árboles y estadísticas descriptivas involucradas en estudios de historia de 
incendios. Se determinó una sincronía entre el historial de incendios y el 
establecimiento de árboles, y los valores de los datos climáticos se 
correlacionaron con el número de árboles establecidos por año. Se 
reconstruyeron 41 eventos de incendio en el período 1855-2019. En general, el 
intervalo medio de incendios (MFI) fue de 2,28 años y de 12,17 años para 
incendios extensos. El número de árboles establecidos por año estuvo 
influenciado por las condiciones secas predominantes en septiembre y octubre 
del año anterior y las condiciones húmedas que se presentaron en diciembre del 
mismo año. Estos resultados constituyen un ejemplo de la respuesta del bosque 
a la severidad de los incendios y su comportamiento histórico y pueden apoyar 
estudios posteriores relacionados con la influencia del fuego en otras 
comunidades forestales presentes en la SMO. 

Palabras clave: severidad del fuego, frecuencia de fuego, dendrocronología, 
cicatrices de incendios, reclutamiento de árboles, composición de especies. 
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CHAPTER I: GENERAL INTRODUCTION 

1.1. Introduction 

Fire is an ecological process which plays a complex role in shaping many 

ecosystems around the world (Harper et al., 2018; Bowman et al., 2020). 

Therefore, the composition and structure of many ecosystems are attributed to 

their dominant fire regime (He et al., 2019). However, human-caused climate 

change and radical shifts in ecosystems have altered fire regimes, with 

increasingly devastating impacts on ecosystems, infrastructure, and even human 

health (Shuman et al., 2022). 

In annual terms, vegetation fires burn an average of 400 to 500 million of hectares 

worldwide (Bowman et al., 2020), and based on climate change projections, those 

could increase (Stephens et al., 2013). In Mexico, an average of 7,077 fires occurs 

annually, affecting on average around 270,967 ha (Comisión Nacional Forestal 

[CONAFOR], 2023). The climate change projections also indicate that Mexico will 

become more arid with more recurrent droughts (Seager et al., 2009), which may 

increase the occurrence and severity of fires. 

Mexico has the greatest diversity of pine species worldwide, most of which are 

adapted to fire (Rodríguez-Trejo, 2015). The Sierra Madre Occidental (SMO) has 

the greater diversity of pines, oaks, and arbutus associations in the world 

(González-Elizondo et al., 2012), and fire is considered to have played a 

determining role in this diversity (Heyerdahl and Alvarado, 2003). 

The SMO is categorized as a critical forest fires region (Zúñiga-Vásquez et al., 

2017; Zúñiga-Vásquez et al., 2019) and several studies have identified altered 

fire regimes at some sites (Fulé and Covington, 1999; Heyerdahl and Alvarado, 

2003; Cerano-Paredes et al., 2019; Cerano-Paredes et al., 2022), condition that 

may impact future fires affecting vegetation structure and composition (Lafon et 

al., 2017). 
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In Mexico, great efforts are made to prevent, timely detect, and to suppress fires 

(Domínguez and Rodríguez-Trejo, 2008; Vega-Nieva et al., 2019; CONAFOR, 

2023). However, the characterization of the fire regime at small scales as well as 

the generation of knowledge of the post-fire dynamics of an ecosystem through 

the interpretation of its current structure, allows the design of effective strategies 

for ecosystem management and restoration. It can also help predict forests 

responses to future changes in the fire regime (Johnstone and Chapin, 2006; 

Gómez-Sánchez et al., 2017). 

1.2. Objectives and hypotheses 

1.2.1. General objective 

To characterize the structural dynamics of mixed conifer forests of the Sierra 

Madre Occidental (SMO) affected by fires to generate information to design 

effective management strategies and forecast ecosystem responses to future 

changes in the fire regime. 

Specific objectives:  

(1) To compare species diversity and forest structure in sites affected by 

different levels of fire severity nine years after a fire event. 

(2) To reconstruct tree-ring-based fire history.  

(3) To interpret the impacts of fire and weather on tree age structure. 

1.2.2. Hypotheses  

(1) Species diversity and structural diversity are more complex in areas 

affected by intermediate fire severity regimes. 

(2) Tree recruitment dates in the current stand are attributed to a combined 

effect of past fires and prevailing climatic conditions after those fires. 
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1.3. Thesis structure  

This thesis is structured in several chapters: Chapter 1 presents a general 

introduction, research objectives, and hypotheses. Chapter 2 presents a literature 

review that includes key concepts in the evaluation of the effect of fires on 

ecosystems and their structural response. Chapter 3 includes the first scientific 

article generated, entitled "Effect of fire severity on the species diversity and 

structure of a temperate forest in northern Mexico", which addresses the first 

specific objective and the first hypothesis, and attempts to answer the question of 

whether there is a relationship between vegetation structure and diversity and fire 

severity, and whether vegetation diversity and structure vary along a fire severity 

gradient. Chapter 4 includes the second scientific article entitled "Impact of fire 

history on the structure of a temperate forest in northern Mexico" in which the 

second and third specific objectives are addressed, as well as the second 

hypothesis. Finally, Chapter 5 includes the general conclusions of the thesis. 

1.4. References  

Bowman, D. M., Kolden, C. A., Abatzoglou, J. T., Johnston, F. H., van der Werf, 
G. R., & Flannigan, M. (2020). Vegetation fires in the Anthropocene. Nature 
Reviews Earth & Environment, 1(10), 500-515. 

Cerano-Paredes, J., Iniguez, J. M., González-Castañeda, J. L., Cervantes-
Martínez, R., Cambrón-Sandoval, V. H., Esquivel-Arriaga, G., & Nájera-
Luna, J. A. (2022). Increasing the risk of severe wildfires in San Dimas, 
Durango, Mexico caused by fire suppression in the last 60 years. Frontiers 
in Forests and Global Change, 5, 940302. 

Cerano-Paredes, J., Villanueva-Díaz, J., Vázquez-Selem, L., Cervantes-
Martínez, R., Magaña-Rueda, V. O., Constante-García, V., ... & Valdez-
Cepeda, R. D. (2019). Climatic influence on fire regime (1700 to 2008) in the 
Nazas watershed, Durango, Mexico. Fire Ecology, 15, 1-14. 

Comisión Nacional Forestal [CONAFOR]. (2023). Manejo del fuego. 
https://snif.cnf.gob.mx/incendios/#estadisticasMapas  

Domínguez, R. M., & Trejo, D. A. R. (2008). Los Incendios Forestales en México 
y América Central1. In Memorias del Segundo Simposio Internacional sobre 
Políticas, Planificación y Economía de los Programas de Protección contra 
Incendios Forestales: Una visión global, Albany, California. 

https://snif.cnf.gob.mx/incendios/#estadisticasMapas
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Fulé, P. Z., & Covington, W. W. (1999). Fire regime changes in La Michilía 
Biosphere Reserve, Durango, Mexico. Conservation Biology, 13(3), 640-
652. 

Gómez-Sánchez, E., de las Heras, J., Lucas-Borja, M., & Moya, D. (2017). Ajuste 
de metodologías para evaluar severidad de quemado en zonas semiáridas 
(SE peninsular): incendio Donceles 2012. Revista de Teledetección, 49, 
Número especial, 103-113. 

González-Elizondo, M.S., González-Elizondo, M., Tena-Flores, J.A., Ruacho-
González, L., & López-Enríquez, L. (2012). Vegetación de la Sierra Madre 
Occidental, México: una síntesis. Acta Botánica Mexicana, 100: 351-403. 

Harper, A. R., Doerr, S. H., Santin, C., Froyd, C. A., & Sinnadurai, P. (2018). 
Prescribed fire and its impacts on ecosystem services in the UK. Science of 
the Total Environment, 624, 691-703. 

He, T., Lamont, B. B., & Pausas, J. G. (2019). Fire as a key driver of Earth's 
biodiversity. Biological Reviews, 94(6), 1983-2010. 

Heyerdahl, E.K., & Alvarado, E. (2003). Influence of Climate and Land Use on 
Historical Surface Fires in Pine-Oak Forests, Sierra Madre Occidental, 
Mexico. In: Veblen, T.T., Baker, W.L., Montenegro, G., & Swetnam, T.W. 
(eds) Fire and Climatic Change in Temperate Ecosystems of the Western 
Americas. Ecological Studies, vol 160. Springer, New York, NY. 
https://doi.org/10.1007/0-387-21710-X_7    

Johnstone, J. F., & Chapin, F. S. (2006). Effects of soil burn severity on post-fire 
tree recruitment in boreal forest. Ecosystems, 9(1), 14-31. 

Rodríguez-Trejo, D. A. (2015). Incendios de Vegetación: Su Ecología, Manejo e 
Historia. Colegio de Postgraduados, 814 p. 

Seager, R., Ting, M., Davis, M., Cane, M., Naik, N., Nakamura, J., ... & Stahle, D. 
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CHAPTER II: THEORETICAL-CONCEPTUAL FRAMEWORK 

2.1. Fire and combustion  

A simple definition states that fire is the release of light and heat generated by the 

combustion of a material (Merrill and Alexander, 1987; Cochrane and Ryan, 

2009). Combustion is the breaking and reforming of chemical bonds, where the 

total energy in the rearranged bonds is less than that of the original bonds. Thus, 

the energy change generated by these rearrangements is released in the form of 

light and heat (Cochrane and Ryan, 2009). 

2.2. Forest fire definition 

A forest fire is the decomposition of forest fuels into carbon dioxide, water vapor, 

minerals, and small amounts of numerous gases, in addition to the release of 

energy in the form of light and heat (Rodríguez-Trejo, 2015). In operational terms, 

a forest fire is understood as the unplanned spread of fire over forest vegetation, 

where combustible material is the element that determines its magnitude 

(CONAFOR, 2021). 

2.3. The fire triangle  

There are three elements necessary for a fire to occur: fuel, heat, and oxygen 

(Stein, 2010). When these three elements are present at the appropriate levels, 

combustion begins (Lafon et al., 2017). However, fuel is the easiest element to 

control (Stein, 2010). In terms of forest fires, fuel is plant material that can ignite 

and burn, these can be classified according to their dimensions (Chandler et al., 

1983). 

2.4. Fire regime  

Fire regime can be described as the patterns of fires that characterize an area 

(Canadian Interagency Forest Fire Centre [CIFFC], 2003). A fire regime reflects 

the spatiotemporal variation of the fire triangle elements in a landscape (Lafon et 
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al., 2017), it also integrates interactions between fires and vegetation, climate, 

and terrain conditions at the landscape scale (Jardel et al., 2014). 

Some of the most important characteristics of a fire regime are fire extent, 

seasonality, frequency, intensity, and severity (Bowman et al., 2020; Franquesa 

et al., 2022). 

- Fire extent refers to the size of a fire or the average size of fires 

experienced by the ecosystem over long periods of time (Cochrane and 

Ryan, 2009).  

- Fire seasonality refers to the period of the year during which the conditions 

exist for fires to start and spread. The fire season is generally divided 

according to the seasonal flammability of fuel types (e.g., spring, summer) 

(CIFFC, 2003). 

- Fire frequency is one of the most used characteristics to describe a fire 

regime and is defined as the number of fires occurring per unit time at a 

given site. It is also described as the interval between fires at a given site 

(Li, 2002).  

Ffire intensity refers to the energy released by the fire (kW/m) and can be 

estimated as the product of the linear propagation rate (m/s), the heat of 

combustion (kJ/kg) and the mass of fuel burned (Cochrane and Ryan, 

2009).   

- Fire severity refers to the ecological change that the fires generate in the 

ecosystems. The severity of the fire is characterized based on the loss or 

decomposition of organic matter, both on the surface and underground 

(Keeley, 2009). 

Fire regimes are classified based on the characteristics of the fire or the effects it 

produces (Agee 1996). In that sense, Brown and Smith (2000) proposed a 

classification of fire regimes into four types: 
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- Understory fire regimes: fires are not lethal to the dominant vegetation and 

approximately 80% of the dominant vegetation survives. 

- Stand replacement fire regime: fires kill the aerial parts of the dominant 

vegetation, modifying the aerial structure, and approximately 80% of the 

vegetation is consumed or dies. 

- Mixed severity fire regime: there is selective mortality of trees according to 

the susceptibility to the fire of the different species. 

- Non-fire regime: the occurrence of fire is scarce or null. 

2.5. Severity and frequency of fire 

Fire intensity and severity are operational and manageable measures and have 

been used to assess ecosystem responses to fire (Keeley, 2009). Fire intensity 

and severity appear to follow similar topographic patterns as fire frequency (Lafon 

et al., 2017), therefore, knowledge about historical fire frequency and severity can 

help guide silvicultural systems and fire suppression policies (Brookes et al., 

2021).  

2.6. Influence of fire on vegetation (diversity, structure, and regeneration) 

Structure, diversity, and tree density are the main characteristics of forest stands 

(Gadow et al., 2007), which are modified by environmental and anthropogenic 

disturbances, resulting in forest change (Payette, 1992), therefore are key 

elements in assessing forest stability (Lähde et al., 1999). 

Fire disturbance determines patterns of vegetation structure and composition in 

many forest ecosystems (Johnstone et al., 2004), as they affect tree mortality and 

recruitment (Kemp et al., 2019). In that sense, tree regeneration patterns can be 

interpreted because of the frequency and magnitude of disturbances. Therefore, 

the structure and composition of future forests will be mainly a consequence of 

current recruitment patterns (Rozas, 2003).  
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On the other hand, fire is known to influence plant species diversity, and the 

effects can be grouped into some general patterns (He et al., 2019). However, 

there may be an optimal range of fire regime characteristics that support the 

greatest diversity, as indicated by the Intermediate Disturbance Hypothesis (IDH) 

(Conell et al., 1978). Thus, the absence of fire can reduce tree diversity in some 

ecosystems (Abreu et al., 2017). 

Fire enhances biodiversity through evolutionary and ecological processes (He et 

al., 2019). Fires create a new habitat with more resources and less competition 

(Pausas and Keeley, 2019). On the other hand, to take advantage of this habitat, 

many plants have developed adaptive strategies for persistence under recurrent 

fires (Keeley et al., 2011). 

In Mexico, fire favors an abundant natural regeneration, specifically in conifer 

ecosystems (Juárez-Martínez and Rodríguez-Trejo, 2003), and the structure and 

diversity of species in some forests affected by the fire are greater than in 

unburned areas (Cadena-Zamudio et al., 2022). Therefore, an understanding of 

the mechanisms and effects of disturbances on ecosystems is essential to 

interpret their current structure, design management strategies, and anticipate 

responses to future changes in the disturbance regime (Johnstone and Chapin, 

2006). 

2.7. Fire ecosystem responses  

Ecosystem responses to fire and fire regimes over time are manifested in changes 

in species composition, changes in vegetation structure and habitat conditions, 

changes in landscape dynamics, and changes in water, carbon, and nutrient 

dynamics in the ecosystem (Jardel et al., 2014). 

On the other hand, post-fire recovery depends on the interaction of various fire-

related factors, post-fire environmental conditions, and the characteristics of the 

species that dominate landscapes before and after a fire (Hayes and Robeson, 

2011). 
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Ecosystem recovery after a fire depends on tree regeneration, which in turn 

depends on seed production, seedling establishment, and survival (Johnstone et 

al. 2016). Fire severity and spatial heterogeneity of burning affect seed availability 

by modifying the distance at which seeds must disperse to reach a burned site 

(Haire and McGarigal, 2010). On the other hand, wildfires can also create 

conditions suitable for tree germination and survival (Tepley et al. 2013). 

Additionally, germination and survival require suitable post-fire weather conditions 

(Stevens-Rumann et al., 2018; Hankin et al., 2019). 

In high severity burned areas, mineral seed beds are created and resources such 

as light, water, and nutrients are released that facilitate tree recruitment (York et 

al. 2003). However, high tree mortality may also contribute to lower seed 

availability (Kemp et al. 2016). 

In that regard, Kemp et al. (2019) found that temperature and seed availability 

were the most important predictors of regeneration in some conifers. An Another 

factor that influences post-fire regeneration is the openings in the canopy created 

by the fire since competition is reduced, and resources increase (York et al. 2003). 

In Mexico, tree regeneration of both Pinaceae and Fagaceae is higher in forests 

with a dominant canopy of pines, in comparison with those dominated by an oak 

canopy (Alfaro-Reyna et al., 2019). In addition, mixed forests are characterized 

by being more productive, having greater stability and less risk of disturbances 

(Liu et al., 2022). 

In Mexico, Fagaceae regeneration appears to be favored by warmer climates and 

presence of forest fires, relative to Pinaceae, suggesting that climate change may 

favor oak dominance (Alfaro-Reyna et al., 2019). Therefore, further studies linking 

fire histories to post-fire changes in forests are needed (Harley et al., 2018). 

2.8. Assessment of the fire effects on forest ecosystems  

Fire effects assessment is essential to (1) document the effects of fire, (2) assess 

damage, (3) assess a burn, and (4) assess the potential for future treatments. 
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However, the assessment of the effects of fire requires abundant funds, 

resources, and proven experience (Lutes et al., 2006). 

Several methodologies have been proposed for the evaluation of fire effects on 

forest ecosystems, for example, Key and Benson (2004) proposed the Composite 

Burn Index (CBI), which visually evaluates the changes in vegetation and soil 

caused by fire through the following variables: amount of fuel burned, level of soil 

degradation and mortality in the vegetation stratum; resulting in the site at various 

levels of severity. They also indicate that remote sensing rates correlate with fire 

severity measured in the field, which facilitated assessments of fire effects on 

ecosystems (Key and Benson, 2006). Thus, De Santis and Chuvieco (2009) 

developed and evaluated a modification to the CBI called the Geometrically 

structured Composite Burn Index (GeoCBI), which considers the fraction of cover 

of the different plant strata and changes in the Leaf Area Index (LAI) of the canopy 

and subcanopy. 

Those studies rely on pre- and post-fire satellite imagery to estimate the amount 

of fire-induced change; the most used metrics are delta normalized burn ratio 

(dNBR) (Key and Benson, 2006), relativized delta normalized burn rate (RdNBR) 

(Miller and Thode, 2007), and relativized burn rate (RBR) (Parks et al., 2014). 

These metrics generally have a high correspondence with field measures of fire 

severity (Parks et al., 2018). The feasibility of studies using satellite imagery and 

drones to assess changes in vegetation cover and composition following wildfire 

also has been evaluated recently (Martinez et al., 2021). 

Guidelines have also been proposed to measure the immediate post-fire 

conditions in the soil (cover and loss of organic matter, color, and changes in its 

structure) and in the vegetation (percentage of sooting and calcination of the 

foliage of the tree and shrub strata) (Lutes et al., 2006; Parson et al., 2010). Other 

studies have considered different variables to estimate post-fire severity in the 

field. For example, percentage of tree basal area mortality (Welch et al., 2016), 

decrease in vegetation cover (Tessler et al., 2016), minimum terminal diameter 
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size in thin branches of vegetation (Moreno and Oechel 1989), age-class 

distribution (Wagner, 1978), tree mortality and recruitment (Etchells et al., 2020). 

On the other hand, dendrochronological techniques are suitable for reconstructing 

disturbances, forest structure and composition (Fulé and Covington, 1997). 

Reconstruction of past fire regimes linking fire history with population dynamics 

and climate effects on survival has proven to be a useful tool for understanding 

the fire effects on ecosystems (Swetnam and Baisan, 1996; Grissino-Mayer, 

2001; Wang and Ying, 2009). Globally, studies have been conducted to 

reconstruct fire regimes, the influence of fire on ecosystem dynamics, and fire 

drivers operating at a range of temporal and spatial scales (Harley et al., 2018). 

Similarly, tree ring dating has been widely used to determine the age of trees 

(Metsaranta, 2020), as a group of trees of the same age is the result of past 

disturbance (Duncan and Stewart, 1991; Clark, 1991). Fire is a disturbance that 

influences the age structure of the stand (Iniguez et al., 2016). Severe fires cause 

high tree mortality and when subsequent climatic conditions are adequate, there 

is an establishment of trees with a uniform age structure (Fulé and Laughlin, 

2007). In contrast, uneven-aged forests are associated with a continuous 

regeneration pattern where disturbances are frequent and of low severity 

(Weatherspoon, 1996; Taylor, 2010; Harley et al., 2018; Sáenz-Ceja and Pérez-

Salicrup, 2020). 

Although most methodologies to assess the effects of fires focus mainly on 

vegetation, other studies have analyzed other aspects of the ecosystem as soil 

erosion (Fernandez et al., 2010), runoff and sediment production in fire-affected 

areas (Rubio et al., 1997), post-fire water quality (Basso et al., 2020), and 

hydrological balance (Venkatesh et al., 2020). CO2 emissions from wildfires 

(Amiro et al., 2009), human health (Dvornik et al., 2018), properties of fire-affected 

soils (Verma and Jayakumar, 2012), and the influence of fire on wildlife (Van Lear 

and Harlow, 2002). 
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2.9. Pyrosilviculture 

Understanding the relationships between silviculture and fire management can 

contribute to more effective management of forest ecosystems (Weatherspoon, 

1996). In that sense, the concept of pyrosilviculture has been originated, which 

can be defined as the use of prescribed fire to achieve forests management 

objectives or as the alteration of non-fire silvicultural treatments to the 

incorporation of fire in the future (York et al., 2021). 

The goals of pyrosilviculture are to create the conditions, so that the next fire that 

occurs is a prescribed fire (Levine et al. 2020). In addition, preparation treatments 

can occur decades before burning (York et al., 2022a). Pyrosilviculture can be 

applied independently of objectives, can be applied, and then adjust prescribed 

burning applications (York et al., 2021). 

Prescribed fire is arguably the ideal silvicultural tool for creating conditions that 

most closely resemble a disturbance regime that has been disrupted by prolonged 

fire suppression. (York et al., 2022b). Pyrosilviculture expands the objectives of 

prescribed burning since it includes reducing stand density, greater forest 

heterogeneity and the selection of species and trees better adapted to 

disturbance regimes (North et al., 2021). 

Given the economic, ecological, and social importance of forests in Mexico, and 

the fundamental role of fire in some of these forests, the need to develop 

sustainable management plans that include fire in accordance with the fire regime 

to which these forests have adapted has been suggested (Fulé and Covington, 

1997; Cerano-Paredes et al., 2022). Specifically, it has been suggested that 

pyrosilviculture could be an interesting and a helpful tool for the management of 

fire-adapted forests (Cerano-Paredes et al., 2022). However, a previous step is 

the fire regime characterization and its influence on vegetation.  
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Figure 1. (a) Location of El Brillante ejido and the area burned in 2012 in the Sierra 
Madre Occidental (SMO); (b) fire severity levels calculated through the dNBR and 
distribution of sampled sites by severity level. 
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Table 1. Formulas for calculating species diversity and structural diversity indices. 

Tree Age Structure 

Statistical Analysis 

Results  
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Table 2. Tree species found by fire severity level. 

Figure 2. Tukey’s multiple comparison test of (a) species richness (S), (b) Shannon 
Index (H), and (c) Evenness Index (E) by fire severity level. Different letters indicate 
significantly different means (p < 0.05); the same letters indicate non-significant 
differences. 
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Figure 3. Dendrogram of species composition similarity at sites affected by different 
levels of fire severity. 

Diameter Structural Diversity 

 

Figure 4. Tukey’s multiple comparison test for (a) number of diameter categories (CATD), 
(b) Shannon index of diameter categories (H-D), (c) Evenness index of diameter size-
classes (E-D), and (d) the coefficient of variation of diameter-size classes (CV-D) by fire 
severity level. Different letters indicate that means were significantly different (p ≤ 0.05); 
the same letters indicate non-significant differences.  

Height Structural Diversity 
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Figure 5. Tukey’s multiple comparison test for (a) number of height categories (CATH), 
(b) Shannon index (H-H), (c) Evenness index (E-H), and (d) coefficient of variation of 
height (CV-H) by fire severity level. Different letters indicate that means were 
significantly different (p ≤ 0.05); the same letters indicate non-significant differences. 

 

Figure 6. (a) Distribution of diameter-size classes across fire severity levels and (b) 
distribution of height classes in each fire severity level. 

Tree Age Structure 
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Figure 7. Tree age structure by severity levels (a) unburned areas, (b) areas affected 
by low fire severity, (c) areas affected by medium or moderate fire severity, and (d) 
areas affected by high fire severity. 

Correlation and Regression Analysis 

  



30 

 

Figure 8. Scatter plots showing the linear association between (a) CATD and dNBR; 
(b) H-D and dNBR; (c) CATH and dNBR; (d) H-H and dNBR; and (e) E-H and dNBR. 
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Table 1. Number and percentage of collected fire-scarred cross-sections. 
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 Figure 1. (a) location of the study area, (b) location of the study area in the context of 

the SMO, and (c) geographic distribution of collected tree cross-sections. 
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Figure 2. (a) Example of dominant ecological conditions in the study area. Fire-

scarred samples were collected from a combination of (b) standing live trees, (c) 

standing logs, and (d) stumps. 
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Figure 3. (a) An example of a fire-scarred sample that has been cross-dated using 

dendrochronological techniques. The specimen had five fire scars. Black numbers 

represent the calendar year of the sample. The numbers in red represent the calendar 

year when the wood was scarred. Examples of fire scars are: (b) the dormancy “D”, (c) 

early-earlywood “EE”, and (d) middle-earlywood “ME” within the annual tree-ring (This is 

adapted from [25]). 
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 Figure 4. Timeline of fire history in the study area, (a) number of trees with 

recorded fire scars (blue line) and percentage of trees that recorded a fire per year 

(red vertical lines), (b) Individual timeline of a tree with fire scars represented by 

horizontal lines. Black vertical dashes represent fire scars recorded by that tree. 

Table 2. Descriptive statistics of fire intervals. 
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Table 3. Seasonality of fire scars. 

Climate-Fire Relationship  

 

 Figure 5. Superposed Epoch Analysis (SEA). Relationship between fire occurrence 
and (a) the number of rainy days in the months of December, January, and February, 
(b) PDSI (for the month of May) and (c) the NIÑO 3 SST index averaged over the 
months of June, July, and August. On the X-axis, the year in which the fire occurred is 
year zero, with climatic conditions on the Y-axis, which include conditions five years 
prior to the fire (negative values on the X-axis) and two years after the fire (positive 
values on the X-axis). The dashed lines represent a 95 % confidence interval derived 
from 1000 Bootstrap simulations. The blue and red vertical bars represent wet and dry 
conditions respectively. 
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 Figure 6. Drought conditions in Mexico during years of extensive fire occurrence in 
the study area [36]. 

Relationship of Tree Age Structure with Fire and Climate  
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 Figure 7. Graphical relationship between: (a) tree establishment and (b) frequency of 
forest fires. Individual timeline of a tree with fire scars is represented by horizontal lines. 
Black vertical dashes represent fire scars recorded by that tree. The red lines represent 
the year of occurrence of extensive fires (scars marked in at least 25% of the samples). 
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 Figure 8. Graphical relationship between tree establishment and climate: (a) 
precipitation in December of the previous year and (b) PDSI values from September–
October of the previous year. 
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CHAPTER V: GENERAL CONCLUSIONS  

Fire drives forest structure patterns in the study region. Fire severity did not show 

relationship with species diversity but indicated a negative relationship with 

structural diversity, being different only in areas affected by high severity fire, 

which tended to homogenize forest structure, making it more prone to 

disturbances, including fire.  

The characterization of forty-one fires that have occurred in the last 165 years in 

the study area is associated with a regime of frequent and low-severity fire regime 

and infrequent presence of severe fires, which acting together have shaped the 

current stand structure. In this study, fire frequency was driven by local and 

regional climatic conditions where the establishment of tree species was 

influenced by the fire frequency and dominant climatic conditions present in the 

years following each fire. 

These results represent an approximation of the forest response to fire severity 

and the historical influence of fire. These findings may support the development 

of similar studies in the Sierra Madre Occidental. In addition, these findings may 

be useful to for proper fire management in the study area, where preventive 

actions to avoid high-severity fires, such as prescribed burns to reduce fuels can 

contribute to the stability of the dominant forest communities. As in other studies, 

it is proposed that pyrosilviculture can be an interesting and helpful tool for forest 

management to be implemented, but further studies could be carried out to 

evaluate the application of fire as a silvicultural tool in the study area. 


