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Resumen general 

VARIABILIDAD GENÉTICA DE ÁCIDOS GRASOS Y FRACCIONES 
NITROGENADAS EN LECHE DE BOVINOS 

Dada la necesidad de satisfacer la demanda social de alimentos de origen animal, 
mejorar las características funcionales de estos alimentos y reducir el impacto 
ambiental del ganado lechero, en años recientes, en los programas de selección 
de ganado bovino lechero se han propuesto nuevos objetivos. Los parámetros 
genéticos (PG) son importantes para diseñar programas de mejoramiento 
genético animal y estimar la respuesta a la selección. En este estudio se analizó 
el componente genético aditivo para características de ácidos grasos (AG) y 
fracciones nitrogenadas (FN) en leche de bovinos Suizo Americano de México 
(BSAM). Se presenta una revisión de literatura sobre factores que podrían afectar 
la estimación de PG para AG en leche de bovinos, así como interacciones entre 
dichos factores. Además, se realizó un meta-análisis para obtener estimaciones 
ponderadas de heredabilidad (h2) y correlación genética (rg) para AG. Tanto el 
método de cuantificación como la ruta metabólica de producción de los AG, son 
factores clave en la estimación de PG. El meta-análisis mostró h2 <0.50 y rg, entre 
AG y componentes de la leche, >0.40. Es posible modificar la composición de la 
grasa de la leche utilizando el componente genético. Finalmente, se estimó h2 
para AG, componentes de la leche, FN, y para la proporción caseína:proteína en 
leche de BSAM, y rg entre AG individuales, entre AG y componentes de la leche, 
entre FN, y entre FN y la proporción caseína:proteína. La h2 estimada, en general, 
fue moderada; para los componentes de la leche, AG, FN y la proporción 
caseína:proteina fue <0.70, <0.40, <0.30 y <0.20, respectivamente; sin embargo, 
para FN algunas estimaciones fueron >0.70. Las rg estimadas abarcaron el rango 
-0.90 a 0.90, algunas incluso cercanas a 1.00 Existe variabilidad genética aditiva 
suficiente para lograr una mejora genética de las características estudiadas; por 
tanto, podrían ser consideradas en programas de selección para la población 
estudiada. 
 
Palabras clave: bovinos Suizo Americano, calidad de la leche, parámetros 
genéticos, programas de selección.  
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Abstract 

GENETIC VARIABILITY OF FATTY ACIDS AND NITROGENOUS 
FRACTIONS IN MILK OF DAIRY CATTLE 

Given the needs to meet social demands for products of animal origin, to improve 
their functional traits, and to reduce the environmental impact of dairy cattle, in 
recent years, new breeding objectives have been proposed in selection programs 
of dairy cattle. Genetic parameters are important to design animal breeding 
programs and to estimate response to selection. The additive genetic component 
for fatty acids (FA) and nitrogenous fractions (NF) traits in milk of Mexican Brown 
Swiss cattle (MBSC) was analyzed. A literature review is presented on the factors 
that could affect the estimation of genetic parameters for milk FA in dairy cattle, 
as well as interactions between these factors. In addition, a meta-analysis was 
performed to obtain weighted estimates of heritability (h2) and genetic correlation 
(rg) for milk FA in dairy cattle. Both the quantification method and the FA metabolic 
pathway are key in the estimation of genetic parameters. The meta-analysis 
showed h2 <0.50, and rg between FA and milk components, >0.40. It is possible 
to modify the milk fat composition of dairy cattle using the genetic component. 
Finally, h2 was estimated for FA, milk components, NF, and for the casein:protein 
ratio in milk of MBSC, as well as rg between individual FA, between FA and milk 
components, between NF, and between NF and casein:protein ratio. Estimates of 
h2, in general, were moderate; for milk components, FA, NF and casein:protein 
ratio: <0.70, <0.40, <0.30 and <0.20, respectively. However, some h2 estimates, 
within NF, were >0.70. The estimated rg ranged from -0.90 to 0.90, some 
estimates were close to 1.00. There is enough additive genetic variability to 
achieve genetic improvement on the traits studied; therefore, they could be 
considered in selection programs for the population studied.  
  
 
Key words: breeding programs, Brown Swiss cattle, genetic parameters, milk 
quality.  

 
 
 
 
 
 
 
 
 



1 

 

1. Introducción general 

La leche y sus derivados son fuentes de nutrientes en la dieta; aportan energía, 

proteínas, vitaminas y minerales (Huth, DiRienzo, & Miller, 2006), por lo que 

representan una valiosa alternativa para acceder a nutrientes. Sin embargo, el 

incremento de enfermedades cardiovasculares y algunos tipos de cáncer 

relacionados con la composición de la leche, han contribuido al aumento en la 

preocupación de consumidores y profesionales de la salud (Soyeurt et al., 

2011). 

Los componentes (%) de la leche son: lactosa (4.8), grasa (3.7), proteína 

(3.4), cenizas (0.7), el resto es agua. Además, contiene vitaminas, iones y 

saborizantes (Fox & Mcsweeney, 1998). La grasa de la leche está constituida 

por triacilgliceroles (aproximadamente 98%), diacilglicerol (2% de la fracción 

lipídica), colesterol (<0.5%), fosfolípidos (alrededor de 1%) y ácidos grasos (AG) 

libres (alrededor de 0.1%) (Jensen & Newburg, 1995). Contiene también trazas 

de éter, lipo-vitaminas y otros compuestos (Parodi, 2004). Dentro de estos 

últimos, los AG desempeñan un papel importante, no sólo por los beneficios a la 

salud humana (Hu et al., 1999; Tanaka, 2005; Rasmussen et al., 2006), sino 

también por su relación con los gases de efecto invernadero (Dijkstra et al., 2011; 

Kandel, Soyeurt, & Gengler, 2012; Vanrobays et al., 2015), y por su contribución 

a mejorar la calidad y propiedades tecnológicas de distintos derivados lácteos 

(Bobe, Hammond, Freeman, Lindberg, & Beitz, 2003; Bobe et al., 2007; Glantz et 

al., 2009). Se han identificado cerca de 400 AG en la leche, presentes en 

cantidades traza, aunque alrededor de 15 (Cuadro 1) se han determinado en 

concentraciones mayores que 1% (MacGibbon & Taylor, 2006).  

Por décadas, el ganado lechero se ha seleccionado con enfoque similar 

alrededor del mundo; características relacionadas con producción y composición 
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de leche, tipo, reproducción y salud, son registradas y usadas comúnmente en 

esquemas de selección (Banos, 2010). Sin embargo, se deben definir nuevos 

objetivos para enfrentar los retos de una producción sustentable, restaurar las 

características funcionales del ganado lechero y atender las demandas sociales 

de los consumidores por los distintos derivados lácteos (Boichard & Brochard, 

2012). Algunos de estos objetivos podrían ser enfocados al perfil de AG, ya que 

estas características tienen efecto económico (calidad de productos lácteos; 

Palmquist, Denise Beaulieu, & Barbano, 1993), social (los AG insaturados son 

benéficos para la salud humana; Soyeurt & Gengler, 2008) y ambiental 

(relacionado con la producción de metano; Dijkstra et al., 2011). Para este 

propósito, es conveniente desarrollar un índice de selección, y el primer paso es 

la estimación de parámetros genéticos para el perfil de AG (Arnould & Soyeurt, 

2009). Diferentes investigaciones (Pegolo et al., 2016; Petrini et al., 2016; 

Narayana et al., 2017) del componente genético aditivo de los AG han estimado 

parámetros genéticos y sugieren que existe variación suficiente para 

considerarse en programas de mejoramiento genético, basados en el perfil de 

AG. Por lo anterior, su inclusión en programas de mejora genética de bovinos 

lecheros podría ayudar a enfrentar los retos mencionados previamente. 

Cuadro 1. Concentración (%) de los principales ácidos grasos en leche de bovino. 

Nombre, No.CZ  ConcY  Nombre, No.CZ ConcY 

Butírico, 4 3.9  Palmítico, 16 27.9 

Caproíco, 6 2.5  Palmitoleio, 16:1 1.5 

Caprílico, 8 1.5  Esteárico, 18 12.2 

Cáprico, 10 3.2  Oleico, 18:1 17.2 

Laúrico, 12 3.6  18:1trans 3.9 

Míristico, 14 11.1  Linoleico, 18:2 1.4 

Miristoleico, 14:1 0.8  Lonoleico conjugado 1.1 

Pentadecanoico, 15 1.2  Linolenico, 18:3 1.0 

Fuente: Creamer & Macgibbon, 1996. z Nombre, No.C = Nombre del ácido graso, número de 
carbonos; Y Conc= Concentración de ácido graso. 
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Algunos esfuerzos para implementar evaluaciones genéticas enfocados 

en la modificación del perfil de AG han sido desarrollados en países europeos 

(Gengler, Troch, Vanderick, Bastin, & Soyeurt, 2012). Sin embargo, aunque en 

México se ha llevado a cabo la evaluación genética del ganado Suizo Americano 

desde el año 2004 (Núñez, Ramírez, García, & Hidalgo, 2018), sólo se ha 

realizado para producción de leche. Dadas las nuevas tendencias en la 

alimentación humana de consumir alimentos nutritivos y funcionales, existe el 

interés por parte de criadores de ganado Suizo Americano, de ofrecer leche con 

mejores características y así aprovechar los nuevos nichos de mercado a nivel 

nacional e internacional, por lo que la inclusión de características de AG, como 

características alternativas y complementarias a la evaluación genética actual, 

permitiría a los ganaderos mexicanos participar con mayores oportunidades en 

el mercado. 

Hipótesis 

Existe suficiente variabilidad genética aditiva para características de ácidos 

grasos en leche de bovinos Suizo Americano de la población mexicana, por lo 

que la evaluación genética de estas características podría ser implementada en 

la población estudiada. 

Objetivos 

 Investigar la variación fenotípica y genética de los ácidos grasos en 

leche de bovinos Suizo Americano de la población mexicana, 

cuantificados mediante cromatografía de gases. 

 Investigar la variación fenotípica y genética de las fracciones 

nitrogenadas y la proporción caseína:proteína en leche de bovinos 

Suizo Americano mexicanos. 

 Estimar parámetros genéticos para ácidos grasos en leche de bovinos 

Suizo Americano mexicanos. 
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 Estimar parámetros genéticos para fracciones nitrogenadas y para la 

proporción caseína:proteína en leche de bovinos Suizo Americano 

mexicanos. 

Estructura de la tesis 

En el Capítulo 2 de esta tesis se presenta una revisión de literatura, donde se 

resumen estimaciones de parámetros genéticos (heredabilidad y correlación 

genética) para características de AG; se describen los posibles factores que 

pudieran generar diferencias en las estimaciones, así como interacciones entre 

los factores identificados. Finalmente, se hace una revisión de los avances en 

selección genómica para estas características. 

Debido a los diferentes factores que afectan las estimaciones de 

parámetros genéticos para AG, se dificulta su comparación directa. En el 

Capítulo 3 se presenta un meta-análisis, basado en un modelo de efectos 

aleatorios, que consideró la varianza dentro y entre estudios, para obtener 

estimaciones ponderadas de h2 y rg para AG.  

Previo a la evaluación genética del contenido de AG en leche de bovinos 

Suizo Americano en la población mexicana, es necesario estimar los parámetros 

genéticos que caracterizan a dicha población. En el Capítulo 4 se estimaron 

dichos parámetros para nueve AG (g/100 g de leche) y los componentes (%) de 

la leche en ganado Suizo Americano, cuantificados por cromatografía de gases 

y espectroscopia.  

Como un trabajo colateral relacionado con el objetivo central de la tesis, 

en el Capítulo 5 se muestra un estudio que tuvo como propósito estimar 

parámetros genéticos para fracciones nitrogenadas y la proporción 

caseína:proteína en leche de la población mexicana de bovinos Suizo Americano. 

Este estudio complementa la posibilidad de incluir características relacionadas 

con la calidad de leche, como una alternativa a sólo considerar la producción de 

leche en la evaluación genética de la población estudiada. 
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Finalmente, como resultado de trabajo desarrollado en la estancia de 

investigación, en la Universidad de Otago, en Nueva Zelanda, en el Capítulo 6 

se presenta un estudio que tuvo como propósito comparar el efecto de diferentes 

estrategias de agrupar progenitores desconocidos (“fantasmas”), en la 

evaluación genética de características de crecimiento para la población mexicana 

de bovinos Suizo Europeo. Este trabajo contribuye al mejoramiento general de la 

calidad de las evaluaciones genéticas que la Universidad Autónoma Chapingo 

realiza de forma anual y rutinaria del ganado Suizo Europeo de México. 
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2. Heritability estimates for milk fatty acid traits in dairy cattle: A 

review 

Abstract 

There is growing interest both by industry and dairy producers in changing the 
milk fatty acid (FA) profile of dairy cattle using genetic selection. Heritability (h2) 
and genetic correlation (rg) are required to estimate the response to selection and 
to design breeding programs. This review summarizes h2 estimates for FA, 
describes patterns of factors affecting them; describes rg among FA, and FA and 
dairy traits; recent advances in genomic selection for FA are also reviewed. From 
literature, there were h2 estimates for 59 individual FA and for nine groups of FA. 
In general, h2 estimates were from low to moderate for both individual and FA 
grouped. Heritability estimates might vary by breed, method of FA determination 
and units to express them, the way h2 is estimated, paternity and connectedness 
structure, and statistical model used to analyze the data. Estimates of rg among 
FA were positive and influenced by their origin, and those between FA and dairy 
traits were affected by stage of lactation. Candidate genes affecting milk fat 
composition have been proposed. Information from molecular markers, SNPs, 
has been used to estimate h2 for FA, but the scarce phenotypic and genotypic 
data limit the application of genomic selection for FA. There is enough additive 
genetic variability for FA to implement breeding programs. Pathway of FA 
synthesis have great influence on h2 estimates, and FA quantification 
methodology on their accuracy. Genetic correlations estimates are influenced by 
both FA origin and stage of lactation. At present, the available data do not allow 
the application of genomic selection to improve the FA profile of dairy cattle. 

Keywords: breeding program, fat composition, genetic parameters, lactation. 

Introduction 

Livestock production faces new challenges to restore functional traits, address 

social demands, and decrease its footprint (Boichard & Brochard, 2012). The new 

breeding goals should consider supplying high quality animal products at a 

reasonable price (Berry, 2013). On this regard, some efforts have been developed 
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to implement genetic evaluations for milk fatty acids (FA) profile (Gengler, Troch, 

Vanderick, Bastin, & Soyeurt, 2012), because their inclusion into breeding 

programs may support some of these new challenges. In addition, FA fulfill the 

criteria proposed by Berry (2013) to be considered as goal traits: they are 

important (economically, environmentally, and socially), they are under genetic 

control and, with the advance of technology, they will be easily measurable at an 

affordable cost. 

Among the natural components of milk, the milk fat is one of the most 

complex (MacGibbon & Taylor, 2006). Around 96% of milk fat are triglycerides, 

each one made up of glycerol esterified with three FA, which are carboxylic acids 

with aliphatic chains of different length and saturation degree (Jensen, 1995). The 

variation in FA profile is attributed to genetic and non-genetics factors. Some of 

these factors have been reviewed but focused on non-genetic factors, such as 

lactation stage, cow health and type of feed (Jensen, 2002; Kay, Weber, Moore, 

Bauman, & Hansen, 2005), insofar as animal variation and breed (Palmquist, 

Beaulieu, & Barbano, 1993; Samková, Spicka, Pesek, Pelikánová, & Hanus, 

2012) have been studied as genetic factors as well.  

Bovine milk fat composition has been studied for some years, but genetic 

studies on FA are limited and most of them are recent. Nowadays, there is 

increasing interest in changing the FA profile using animal selection because 

those changes are permanent and give additional value to dairy products. 

Therefore, heritability (h2) estimates and genetic correlations (rg) are required to 

estimate the response to selection and to design breeding programs. Recent h2 

estimates (Pegolo et al., 2016; Petrini et al., 2016; Narayana et al., 2017) suggest 

an important genetic variation that could be used to develop genetic programs. 

Thus, this review aims to give an overview of advances in h2 estimates for FA in 

dairy cattle and to identify some of the main factors that could influence them. 

Additionally, it presents rg among FA, and FA with dairy traits; finally, it 

summarizes advances in genomic selection for FA. 
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Implications of milk fatty acids for the dairy industry 

The FA profile influences the nutritional value (Mensink, Zock, Kester, & Katan, 

2003), quality and technological properties of milk products (Bobe et al., 2007). 

For example, it plays a key role in cheese texture (Bugaud et al., 2001; Coppa et 

al., 2011), cheese flavor (Collins, McSweeney, & Wilkinson, 2003; Haug, 

Høstmark, & Harstad, 2007), and coagulation attributes (Auldist, Johnston, White, 

Fitzsimons, & Boland, 2004). In addition, FA profile affects physical butter 

characteristics such as spreadability, texture and hardness (Bobe, Hammond, 

Freeman, Lindberg, & Beitz, 2003; Coppa et al. 2011; Smith, Coffey, Johnstone, 

& Wall, 2014). Therefore, modification of the FA profile could have additional value 

for the dairy industry and could allow customer a greater intake of nutrients from 

dairy products. 

Implications of fatty acids for human health 

Theoretically, milk contains at least 400 different FA (Jensen, 2002). The effects 

on consumer health of every one of them have not been studied yet, maybe, 

because almost all of them are in low concentrations. In nutritional terms, some 

FA may have negative effects on human health; for example, the C12:0, C14:0 

and C16:0 have been associated with adverse health effects because their intake 

could contribute to elevate the blood levels of low-density lipoproteins (Mensink 

et al., 2003). On the contrary, other FA could be beneficial for human health; for 

instance, unsaturated FA have been found to have a negative relationship with 

the incidence of coronary heart disease (Connor, 2000), they could improve 

insulin sensitivity and glucose tolerance (Parodi, 2004), and some long chain FA 

have shown anti-inflammatory effects (Haug et al., 2007). This summarized 

evidence emphasizes the importance of FA for human health. 
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Factors that could affect estimates of heritability 

Genetic parameter estimates are specific for the population and time where they 

are estimated; h2 estimates of individual FA have ranged between 0.00 and 0.74, 

higher than those summarized by Arnould and Soyeurt in 2009 (0.00-0.54), who 

only include the major FA. For FA grouped by their degree of saturation, h2 has 

oscillated between 0.00 and 0.69, and between 0.07 and 0.68, when they are 

grouped by their chain length.  

Some factors have been proposed (Mele et al., 2009; Garnsworthy, Feng, 

Lock, & Royal, 2010; Tullo et al., 2014; Pegolo et al., 2016; Petrini et al., 2016) to 

affect h2 estimates of FA. Some of the factors are the method used to measure 

FA, the differences in data editing and structure, the inclusion or not of repeated 

records, the stage of lactation, the units used to express FA, the statistical models 

used to analyze the data, the breed and number of available samples, and the 

way in which h2 is expressed.  

Way in which h2 is expressed 

Heritability of FA has been estimated mainly from: a) analysis of variance of a trial 

having a large number of genotypes, b) genetic and environmental variances 

across generations, and c) parent–offspring regression. Comparison of h2 

estimates among studies might be complicated, due to differences in which 

phenotypic variance was decomposed. For example, Heringstad, Gianola, 

Chang, Ødegård, and Klemetsdal (2006) refer to intraherd h2, as the one required 

to predict response to selection of alternative breeding programs, and allows 

comparisons with studies that consider the effect of herd as a fixed effect 

(Duchemin et al., 2013). Another example is the way of estimating h2 (Krag, 

Janss, Shariatia, Berg, & Buitenhuis, 2013a). These authors, showed that SNP 

information could be used, as an alternative to traditional pedigree-based 
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methods, to obtain genomic h2. This way to estimate h2 was used by Poulsen, 

Eskildsen, Skov, Larsen, and Buitenhuis (2014). 

Breed 

The most recent studies focus their efforts in few breeds, especially European 

breeds, as Brown Swiss (BS), Montbeliarde (MO), Normande (NO), and Holstein 

(HO) cattle. The HO breed, in addition to be the most studied (Boichard et al., 

2014; Poulsen et al., 2014; Penasa, Tiezzi, Gottardo, Cassandro, & De Marchi, 

2015), have had the broadest range of h2 for individual FA (0.0 to 0.74), for FA 

grouped by their degree of saturation (0.07 to 0.69), and for FA grouped by their 

chain length (0.17 to 0.68). Regarding the MO and NO breeds (Gion, Larroque, 

Brochard, Lahalle, & Boichard, 2011; Boichard et al., 2014), the h2 estimates for 

individual FA and FA grouped by their degree of saturation were similar between 

them but lower than for HO. They were inside the range of 0.10 and 0.48 for 

individual FA, and between 0.11 and 0.36 for FA grouped by their degree of 

saturation. In BS, Tullo et al. (2014) and Pegolo et al. (2016) have reported h2 for 

individual FA between 0.02 and 0.36; from 0.06 to 0.18 for their degree of 

saturation, and from 0.05 to 0.15 according to their chain length. This scenario 

opens the possibility of investigating a larger number of breeds under different 

production and environmental conditions, especially those for breeds locally 

adapted. 

According to Garnsworthy et al. (2010), the magnitude of the h2 estimate 

is likely to contain greater genetic variance if the studies include multiple breeds. 

In this regard, some studies combined information from two or more breeds. 

Soyeurt et al. (2007; 2008a) combined information of BS, Belgian Blue, HO, 

Jersey, MO, NO, and Meuse-Rhine-Yssel. Nonetheless, almost all breeding 

programs are focused for a specific population into a breed, so that the h2 

estimates obtained in these studies should be taken with caution. Breed 

differences may be important to get estimates of h2 and heterosis effects for FA. 
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Lopez-Villalobos et al. (2014) used information of HO×Jersey cows, and 

they got moderate estimates of h2, so much for individual FA (0.05 to 0.45) as for 

FA grouped by their degree of saturation (0.14 to 0.48). These estimates were 

similar to those reported for MO and NO breeds, but lower than HO when FA were 

grouped by chain length (0.30–0.50). These authors also estimated effects of 

heterosis, and although the results indicated significant effects only for some FA, 

their research may serve to guide the crosses and management practices to 

assure the use of animals with production of FA according to the final consumer 

needs. 

Source and units to measure milk fatty acid profile 

Units to express the quantities of FA vary among studies making difficult their 

comparison and perhaps interpretation as well. Some of the more common units 

used are FA weight as a proportion of total fat weight, g of FA 100 g-1 of fat and g 

of FA 100 g-1 of milk. Other units less frequently used include percentages of a 

FA of total FA and g of FA L-1.  

Based on the literature reviewed, it has been observed that expressing FA 

in milk results in higher h2 than when they are measured in milk fat or when they 

are expressed with FA. In this sense, it was observed that individual FA follows 

this trend (0.34 in milk, 0.31 in milk fat or 0.16 in FA proportion), as well as 

considering the chain length, the average h2 for FA in milk was higher (0.40) than 

that for milk fat (0.25). When FA are grouped by their degree of saturation, 

average h2 was similar to when they were measured in milk or milk fat (0.24 and 

0.23). According to these findings, measuring FA in milk could be the best option 

to get a greater response to selection. In addition, quantifying FA in milk could 

represent less man-hours in the laboratory as well as fewer reagents than when 

FA are quantified by gas chromatography (GC). 
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Analytical methodology 

Mele et al. (2009) indicated that differences in h2 estimates among studies could 

be due to differences in the analytical method used to measure FA profile, 

because of the error variance, which is influenced by the sample size. Two 

methods have been used to quantify FA: GC and mid-infrared spectrometry (MIR). 

Gas chromatography analysis has the advantage of being efficient but requires a 

lengthy analysis, expensive reagents, and highly skilled staff (Soyeurt et al., 

2006a; Narayana et al., 2017). In contrast, MIR has the advantage of high 

throughput, ease of use, and high availability (Soyeurt et al., 2006b). In this 

context, studies based on GC were generally based on a limited number of 

records, compared to studies based on MIR, that in some cases have had more 

than 100,000 FA measures available, confirming the potential use of MIR to 

quantify FA profile, particularly given its low cost of analysis. 

Until a few years ago, GC was the most common analytical method used 

to quantify FA. However, the number of studies that use GC (Krag et al., 2013b; 

Bilal, Cue, Mustafa, & Hayes, 2014; Poulsen et al., 2014) is comparable to those 

that use MIR (Bastin, Soyeurt, & Gengler, 2013; Boichard et al., 2014; Vanrobays 

et al., 2015). This new trend could be attributed to Soyeurt et al. (2006a), who 

promoted research aimed at developing prediction equations to measure FA 

content using MIR. Mid-infrared spectroscopy offers an opportunity to use larger 

number of records for genetic analysis and to provide more accuracy than GC. It 

is important to recognize that standard errors were not reported in all the reviewed 

papers; however, so far MIR studies seem to result in smaller standard errors than 

GC studies. 

Population structure and statistical model 

The number of individuals making up the sampled population is crucial to 

determine the genetic variability. A small number of individuals sampled into a 
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population leads to a decrease in additive genetic variance, resulting in an 

increase of probable adverse effects of inbreeding and smaller genetic gain, that 

is why, population structure should be considered to get more precision of h2 

estimates (Krag et al., 2013a).  

Bastin, Gengler, and Soyeurt (2011a) pointed out that another important 

source of differences in h2 estimates may lie in the genetic model used to analyze 

the data and estimate genetic parameters. Selection of models includes 

considerations from different nature, factors such as experimental design and 

objectives of research, collection and distribution of data, the relationship between 

explanatory and dependent variables, the capacity of the model for describing the 

phenomenon to increase the determination coefficient, and the number of 

parameters the analyst wants to explain.  

Considering the literature reviewed, it was revealed that animal, random 

regression and repeatability models were the most common models fitted to 

analyze FA profile. The h2 estimates for individual FA with animal models showed 

the highest values, although similar to those maximum values obtained with the 

random regression and sire models. The narrowest range of h2 for individual FA 

was reported with the repeatability model, and the repeatability and sire models 

were associated with a narrower h2 range than the animal or random regression 

models. 

Heritability for individual milk fatty acids 

Although milk contains a wide range of FA, estimates of h2 were found for 59 

individual FA (Tables 1 and 2); most of these studies included less than 20 FA 

and some of them considered more than 30 FA (for example, Bilal et al., 2014; 

Pegolo et al., 2016). The FA C4:0, C6:0, C8:0, C10:0, C12:0, C14:0, C14:1cis9, 

C16:0, C18:0, C18:1cis9, and C18:2cis9trans11 are among the most individually 
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studied. There is an observed trend to study individual together with grouped FA 

into the same research. 

The major FA (Table 1), considered to be those present at or above 1% 

concentration (MacGibbon & Taylor, 2006), had moderate h2 (0.17-0.41). In 

general, individual saturated FA showed higher h2 than unsaturated FA (0.32 vs 

0.21); this trend was pointed out by Soyeurt, Dardenne, Dehareng, Bastin, and 

Gengler (2008b), Krag et al. (2013b) and Boichard et al. (2014). However, 

individual unsaturated FA have been less studied than saturated, so the above 

mentioned difference should not be taken as definitive. Among individual 

saturated FA, C10:0 had the highest h2 (0.41) and C23:0 the lowest (0.03). The 

individual unsaturated C12:1, and C22:5 (n-3) joint with C18:2trans10cis12 

showed the highest and the lowest h2, 0.41 and 0.01, respectively. In general, FA 

with an even-numbered carbon chain had higher h2 than FA with an odd-

numbered carbon chain. Also, h2 decreased with increasing number of carbons in 

the chain (Tables 1 and 2). 

Heritability for groups of milk fatty acids 

Fatty acids could be grouped by their degree of saturation in saturated (SFA) and 

unsaturated (UFA). Within the UFA, they have been classified in 

monounsaturated (MUFA) and polyunsaturated (PUFA). Also, FA could be 

grouped by the carbon chain length in short (C4 to C10, SCFA), medium (C12 to 

C16, MCFA), and long (≥ C17, LCFA) FA. Pegolo et al. (2016) used another 

classification. These authors grouped the FA in branched-chain (BCFA) and odd-

chain FA (OCFA), 

Milk fatty acids grouped by their degree of saturation are more studied than 

grouped by their chain length. Most published SFA have shown higher h2 than 

MUFA, PUFA or UFA (Table 3), but PUFA and UFA showed higher h2 estimates 

than MUFA. However, Bilal et al. (2014) reported that SFA and MUFA had higher 
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h2 than PUFA within Canadian HO, but in this summary (Table 3) MUFA had the 

lowest average h2. Higher h2 for SFA could be due to the low activity of the Δ9 

desaturase enzyme on FA shorter than 18 carbons (Chilliard, Ferlay, Mansbridge, 

& Doreau, 2000). 

In Table 3, similar h2 could be observed for SCFA and MCFA, and these 

h2 estimates being larger than those for LCFA, supporting conclusions derived by 

Bastin et al. (2011a) and Krag et al. (2013b). In addition, h2 estimates (individually 

or in groups) also were higher for SCFA than for LCFA, and this was associated 

with the biosynthesis path of FA (Garnsworthy et al., 2010; Bouwman et al., 2011; 

Gion et al., 2011). Bovine FA originate from two main sources: de novo synthesis 

and dietary uptake of preformed FA. Almost all of the FA C4:0 to C14:0 and 

approximately half of the C16:0 (Bauman & Griinari, 2003) are synthesized de 

novo, involving various enzymes in the mammary gland (Garnsworthy et al., 

2010), such as acetyl-coenzyme A carboxylase and FA synthetase, which are 

under genetic control, whereas the remaining C16:0, and the higher carbon chain 

FA are mainly derived from the diet (Bauman & Griinari, 2003). 

According to Stoop et al. (2008), Garnsworthy et al. (2010), and Bastin et 

al. (2011a), de novo synthesized FA (short and medium chain) have a stronger 

genetic control (expected to have a higher h2) than FA derived from the cow’s diet 

or body fat mobilization. The low h2 estimates for LCFA indicates that processes 

involved in the inclusion of these FA into milk, such as biohydrogenation in the 

rumen, absorption in the intestine, or mobilization of FA from adipose tissue, may 

have small influence from the genetic side (Bastin et al., 2011a). 
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Table 1. Minimum, mean and maximum h2 estimates reported for the major milk fatty acids in dairy cattle, expressed in 
relation to fatty acids (FA), fat, and milk. 

Individual FA 
FA  Fat  Milk  

Avg1 
Min Mean Max  Min Mean Max  Min Mean Max  

C4:0 0.03 0.15 0.38  0.31 0.41 0.48  0.00 0.31 0.63  0.33 

C6:0 0.04 0.20 0.32  0.12 0.36 0.48  0.00 0.37 0.67  0.34 

C8:0 0.12 0.25 0.32  0.12 0.41 0.62  0.18 0.42 0.68  0.39 

C10:0 0.17 0.24 0.34  0.09 0.46 0.74  0.22 0.45 0.71  0.41 

C12:0 0.13 0.23 0.31  0.09 0.42 0.65  0.18 0.43 0.69  0.39 

C14:0 0.09 0.15 0.19  0.07 0.36 0.62  0.00 0.40 0.68  0.35 

C14:1cis9 0.28 0.34 0.39  0.19 0.35 0.60  0.32 0.37 0.40  0.35 

C15:0 0.07 0.21 0.52  0.13 0.35 0.60  - - -  0.27 

C16:0 0.00 0.21 0.36  0.03 0.25 0.43  0.09 0.35 0.67  0.28 

C16:1cis9 0.06 0.16 0.30  0.14 0.33 0.51  0.23 0.35 0.49  0.29 

C18:0 0.04 0.20 0.33  0.08 0.22 0.52  0.13 0.26 0.60  0.23 

C18:1cis9 0.00 0.12 0.22  0.02 0.19 0.37  0.05 0.20 0.52  0.18 

C18:2cis9,12 0.06 0.19 0.45  0.10 0.17 0.27  0.08 0.16 0.26  0.17 

C18:2cis9trans11 0.02 0.14 0.41  0.12 0.27 0.44  0.11 0.21 0.42  0.23 

C18:3cis9,12,15 0.05 0.15 0.41  0.22 0.25 0.26  0.09 0.18 0.26  0.19 
1Avg = overall average. Elaborated with data from: Schennink et al. 2007; Soyeurt et al. 2007; Bobe, Minick Bormann, Lindberg, Freeman & Beitz, 
2008; Soyeurt et al. 2008a; Stoop, van Arendonk, Heck, van Valenberg & Bovenhuis, 2008; Mele et al. 2009; Schennink et al. 2009b; Stoop et al. 
2009; Garnsworthy et al. 2010; Pintana, Bouwman, Rutten, Bovenhuis & Söelkner, 2010; Rutten, Bovenhuis & van Arendonk, 2010; Bastin et al. 
2011a; Bastin, Soyeurt, Vanderick & Gengler, 2011b; Bouwman, Bovenhuis, Visker & van Arendonk, 2011; Gion et al. 2011; Bastin, Berry, Soyeurt 
& Gengler, 2012; Bouwman, Visker, van Arendonk & Bovenhuis, 2012; Bastin et al. 2013; Duchemin et al. 2013; Krag et al. 2013b; Bilal et al. 2014; 
Boichard et al. 2014; Lopez-Villalobos et al. 2014; Smith et al. 2014; Poulsen et al. 2014; Lassen, Poulsen, Larsen & Buitenhuis, 2016; Pegolo et al. 
2016; and Petrini et al. 2016. 
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Table 2. Minimum, mean and maximum h2 estimates reported for the minor milk fatty acids in dairy cattle, expressed in 
relation to fatty acids (FA), fat, and milk. 

Individual FA 
FA  Fat  Milk  

Avg1 
Min Mean Max  Min Mean Max  Min Mean Max  

Saturated Fatty Acids 

C5:0 - - -  0.14 0.14 0.14  - - -  0.14 
C7:0 - - -  0.17 0.17 0.17  - - -  0.17 
C9:0 - - -  0.25 0.25 0.25  - - -  0.25 
C11:0 0.13 0.19 0.25  0.34 0.34 0.34  - - -  0.24 
C13:0 0.02 0.09 0.18  0.19 0.19 0.20  - - -  0.15 
C17:0 0.09 0.24 0.41  0.07 0.20 0.33  0.35 0.47 0.70  0.34 
C19:0 - - -  0.23 0.23 0.23  - - -  0.23 
C20:0 0.00 0.14 0.38  0.24 0.24 0.24  - - -  0.16 
C22:0 0.03 0.15 0.35  - - -  - - -  0.15 
C23:0 0.03 0.03 0.03  - - -  - - -  0.03 
C24:0 0.03 0.05 0.06  - - -  - - -  0.05 

Monounsaturated Fatty Acids 

C10:1cis9 0.12 0.21 0.3  0.33 0.38 0.48  - - -  0.34 
C12:1 0.41 0.41 0.41  0.37 0.41 0.48  - - -  0.41 
C14:1trans9 0.02 0.02 0.02  - - -  - - -  0.02 
C16:1trans9 0.03 0.04 0.05  - - -  - - -  0.04 
C17:1cis9 0.07 0.11 0.14  0.43 0.43 0.43  - - -  0.21 
C18:1cis11 - - -  0.21 0.21 0.21  0.12 0.17 0.22  0.18 
C18:1cis12 0.08 0.08 0.08  0.21 0.21 0.21  - - -  0.15 
C18:1trans4 0.02 0.02 0.02  - - -  - - -  0.02 
C18:1trans9 0.01 0.05 0.08  0.22 0.22 0.22  0.11 0.17 0.22  0.13 
C18:1trans10 0.06 0.09 0.13  0.10 0.10 0.10  - - -  0.10 
C18:1trans11 0.00 0.09 0.27  0.06 0.16 0.29  0.12 0.20 0.28  0.15 
C18:1trans16 0.06 0.06 0.06  - - -  - - -  0.06 
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Table 2. Minimum, mean and maximum h2 estimates reported for the minor milk fatty acids in dairy cattle, expressed in 
relation to fatty acids (FA), fat, and milk (Continuation…) 

Individual FA 
FA  Fat  Milk  

Avg1 
Min Mean Max  Min Mean Max  Min Mean Max  

C20:1cis9 0.06 0.06 0.06  - - -  - - -  0.06 
C20:1cis11 0.37 0.37 0.37  - - -  - - -  0.37 

Poly-unsaturated Fatty Acids 

C18:2(n-6) 0.16 0.17 0.18  0.12 0.15 0.17  - - -  0.16 
C18:2trans4,8 - - -  0.36 0.36 0.36  0.18 0.27 0.35  0.30 
C18:2trans6,8 0.06 0.06 0.06  - - -  - - -  0.06 
C18:2trans9,12 0.02 0.03 0.03  - - -  - - -  0.03 
C18:2trans10cis12 0.01 0.01 0.01  - - -  - - -  0.01 
C18:2trans11cis15 0.03 0.03 0.03  - - -  - - -  0.03 
C18:3cis9,11,15 0.03 0.03 0.03  - - -  - - -  0.03 
C18:3(n-3) - - -  0.03 0.03 0.03  - - -  0.03 
C18:3(n-6) - - -  0.12 0.14 0.15  - - -  0.14 
C18:3trans9,cis12,15 0.17 0.17 0.17  - - -  - - -  0.17 
C20:3cis8,11,14  0.11 0.11 0.11  - - -  - - -  0.11 
C20:3(n-6) 0.21 0.21 0.21  - - -  - - -  0.21 
C20:4cis5,8,11,14 0.08 0.08 0.08  - - -  - - -  0.08 
C20:4(n-6) 0.09 0.09 0.09  - - -  - - -  0.09 
C20:5cis5,8,11,14,17 0.05 0.05 0.05  - - -  - - -  0.05 
C20:5(n-3) 0.04 0.04 0.04  - - -  - - -  0.04 
C22:4cis7,10,13,16 0.05 0.05 0.05  - - -  - - -  0.05 
C22:5cis7,10,13,16,19 0.04 0.04 0.04  - - -  - - -  0.04 
C22:5(n-3) 0.01 0.01 0.01  - - -  - - -  0.01 

1Avg = overall average. Elaborated with data from: Schennink et al. 2007; Soyeurt et al. 2008a; Stoop et al. 2008; Mele et al. 2009; Schennink et al. 2009b; Stoop et 
al. 2009; Garnsworthy et al. 2010; Bouwman et al. 2011; Gion et al. 2011; Bouwman et al. 2012; Duchemin et al. 2013; Krag et al. 2013b; Bilal et al. 2014; Lopez-
Villalobos et al. 2014; Poulsen et al. 2014; Lassen et al. 2016; and Pegolo et al. 2016.  
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Table 3. Minimum, mean and maximum h2 estimates reported for groups of milk 
fatty acids in dairy cattle, expressed in relation to fatty acids (FA), fat and milk. 

FA group1 
FA  Fat  Milk  

Avg2 
Min Mean Max  Min Mean Max  Min Mean Max  

SFA 0.14 0.25 0.46  0.09 0.22 0.34  0.05 0.34 0.68  0.30 

MUFA 0.09 0.17 0.21  0.14 0.21 0.34  0.06 0.18 0.58  0.19 

PUFA 0.03 0.18 0.42  0.12 0.22 0.28  0.00 0.23 0.69  0.22 

UFA 0.48 0.48 0.48  0.13 0.24 0.33  0.07 0.20 0.60  0.23 

SCFA 0.05 0.23 0.39  0.20 0.20 0.20  0.24 0.45 0.68  0.38 

MCFA 0.15 0.23 0.30  0.20 0.20 0.20  0.32 0.47 0.68  0.39 

LCFA 0.13 0.26 0.50  0.09 0.09 0.09  0.17 0.29 0.56  0.26 

BCFA 0.08 0.08 0.08  - - -  - - -  0.08 

OCFA 0.12 0.12 0.12  - - -  - - -  0.10 

1 SFA = saturated FA; MUFA = monounsaturated FA; PUFA = polyunsaturated FA; UFA = unsaturated FA; 

SCFA = short chain fatty acids; MCFA = medium chain fatty acids; LCFA = long chain fatty acids; BCFA = 

branched-chain fatty acids; OCFA = odd-chain fatty acids. 2 Avg = overall average. Elaborated with data 

from: Soyeurt et al. 2007; Bobe et al. 2008; Soyeurt et al. 2008a; Mele et al. 2009; Schennink et al. 2009b; 

Garnsworthy et al. 2010; Bastin et al. 2011a; 2011b; Gion et al. 2011; Bastin et al. 2012; Bastin et al. 2013; 

Duchemin et al. 2013; Krag et al. 2013b; Bilal et al. 2014; Boichard et al. 2014; Tullo et al. 2014; Lopez-

Villalobos et al. 2014; Smith et al. 2014; Penasa et al. 2015; Vanrobays et al. 2015; Pegolo et al. 2016; Petrini 

et al. 2016; and Narayana et al. 2017. 

Genetic correlations among milk FA 

Bastin et al. (2012) showed that genetic correlations (rg) among FA tend to be 

stronger when they have similar chain length, reflecting their common 

biosynthesis pathway (Soyeurt et al., 2007; Narayana et al., 2017). In general, rg 

were high and positive among C4:0 to C14:0 (0.27 to 1.00; Stoop et al., 2008; 

Bastin et al., 2013; Duchemin et al., 2013), as well as among unsaturated C18, 

but correlations of C4:0 to C14:0 with unsaturated C18 were generally weak 

(Stoop et al., 2008). Some specific combinations have been found close to zero 

or negative (C14:0 and C18:0, 0.09; C16:0 and C18:0, -0.84; Mele et al., 2009). 

Some groups of FA that share a common pathway, de novo synthesis, have 



 

 

22 

 

shown associations due to unknown environmental factors and it suggests the 

existence of micro-environmental genetic variance (Pegolo et al., 2016). 

Genetic correlations among all FA groups illustrates similarities and 

differences in their composition based on chain length and saturation (Narayana 

et al., 2017). The rg between SCFA and MCFA may reflect the activity of the FA 

synthase mammary enzyme; insofar as the rg among PUFA are likely to reflect 

the activity of the mammary elongase and desaturase enzymes (Pegolo et al., 

2016). Estimates of rg between FA groups are variable, ranging from 0.41, SFA 

with PUFA, to 0.95, MUFA with UFA (Penasa et al., 2015). Similar results were 

found by Bilal et al. (2014), who observed positive rg between MUFA and PUFA, 

but SFA were negatively correlated with MUFA and UFA. These findings suggest 

that an index including FA with similar metabolic processes of production in the 

mammary gland could be used to modify FA genetically. 

Genetic correlations among milk fatty acids and milk production traits 

Milk fatty acid profile has been associated with traits traditional measured in dairy 

cattle. The magnitude of rg depends on specific conditions of each study, however, 

especially individual FA seem to vary through lactation. This variability could 

reflect changes in the energy status of the cows; thus, changes in FA profile. 

Several studies concluded that rg between milk yield and individual or grouped FA 

are moderate in magnitude but mainly negative. 

Genetic correlations among milk yield and individual FA have not shown 

large variation among FA, but they are strongly affected by the day in milk (Bastin 

et al., 2011a), being weaker in early lactation, due to dilution effects, and ranging 

from -0.43 to -0.25 (Soyeurt et al., 2007; Bastin et al., 2013; Petrini et al., 2016). 

A similar trend of moderate and negative correlations has been observed for the 

different groups of FA, ranging from -0.47 to -0.05 (Bastin et al., 2013, Penasa et 

al., 2015; Petrini et al., 2016), depending strongly on the specific individual FA. 

According to Bastin et al. (2013), selection for milk yield in early lactation would 
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decrease contents of all FA groups but with different intensity, however, selection 

for milk yield throughout lactation would affect all FA profile almost equally. 

The rg between milk fat with milk and protein with milk could be a key factor 

in the relation with FA because when milk yield increases, the milk components 

concentration decrease. Milk fat content in milk has been used as a selection 

criterion over time, bringing changes in FA profile, apparently without any direction 

and in different magnitude, causing a wide range in the values of the reported rg. 

Opposite to the observed rg with milk yield, the rg between milk fat and FA 

does not have a clear tendency, and it seems to be more dependent on the 

specific combination considered. For example, the rg between milk fat percentage 

and C14:0 is not well defined, because the range of rg has been found broad in 

both signs (-0.40 to 0.43; Schennink et al., 2007; Soyeurt et al., 2007; Pintana et 

al., 2010). The rg between milk fat percentage and C16:0 has been found 

generally positive (0.30 and 0.74; Stoop et al., 2008; Pintana et al., 2010) and 

even close to one (0.98; Petrini et al., 2016). Another example of rg in both 

directions was the one obtained for milk fat percentage and C18:0, ranging from 

positive (0.86; Petrini et al., 2016) to negative (-0.74; Stoop et al., 2008; Pintana 

et al., 2010) values. In general, the rg between milk fat percentage with grouped 

FA has been high and positive (Soyeurt et al., 2008b; Bastin et al., 2011a; Petrini 

et al., 2016). Since milk fat is formed by a big number of components, and 

although many of them have not been thoroughly investigated, some of them 

would have a key role in the dairy industry. Thus, their inclusion in a selection 

index for future breeding programs should ensure that the farmer offers supplies 

with enough milk fat to support the dairy industry, but with beneficial properties for 

human health, and in this way, to reduce the negative perception that milk fat has. 

Similar to milk fat, there is no clear association between protein percentage 

and individual FA, because their rg estimates have had a wide range of values, 

from positive to negative (Bastin et al., 2011a; 2013; Petrini et al., 2016). However, 
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some exceptions have been observed; for example, individual saturated FA have 

been found positively correlated with protein percentage (up to 0.6; Bastin et al., 

2011a; 2013; Petrini et al., 2016), insofar as unsaturated individual FA have had 

negative rg, especially with unsaturated FA of the family of C18 (up to -0.76; Stoop 

et al., 2008; Soyeurt et al., 2008b; Mele et al., 2009). Regarding to rg between 

percentage of protein and FA grouped, except for the negative value for MUFA 

and percentage of protein (Soyeurt et al., 2007; Mele et al., 2009), most of the 

studies have obtained positive values (up to 0.6; Soyeurt et al., 2007, Tullo et al., 

2014; Petrini et al., 2016). Results above mentioned show that an increase of milk 

fat or protein will modify the FA profile of milk; however, these changes are not 

directly related with the FA profile beneficial for consumer health. 

Genetic correlations among milk FA and other traits 

The rg between reproductive traits and FA have not been widely studied. Genetic 

correlations between FA and days open widely varied throughout lactation (Bastin 

et al., 2011b; 2012). The rg for UFA, MUFA, LCFA, C18:0 and C18:1 cis-9 with 

days open were positive at the beginning of lactation but changed sign after 100 

days in milk. However, for other groups and individual FA, the rg with days open 

has been negative throughout lactation (Bastin et al., 2012). These results could 

be related to the energetic balance of the cow (Bastin et al., 2011b), especially at 

the beginning of lactation when the cow is in negative balance, because during 

this stage the amount of energy required for maintenance and milk production 

exceeds the amount of energy that the cow can get from the diet. To reverse this 

situation, the cow uses its body reserves, that increase the release of LCFA and 

inhibit the de novo synthesis, and the diets offered are high in energy that could 

contribute to LCFA. This suggests that some FA could be indicators of body fat 

mobilization (Bastin et al., 2012), and they would be useful to design feeding 

programs of dairy cattle. 
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Recent studies suggest a relationship between some FA and CH4 

production, because both products have common precursors. This association 

has been determined, in general, as moderate and dependent on the lactation 

stage (Chilliard, Martin, Rouel, & Doreau, 2009; Dijkstra et al., 2011). Dijkstra et 

al. (2011) pointed out that FA from C8:0 to C16:0 and C17:0 anteiso had positive 

rg with CH4 emissions, whereas C17:0 iso and FA with more than 17 carbons were 

negatively related. Vanrobays et al. (2015) reported negative rg between CH4 and 

some groups of FA, as LCFA and UFA in early lactation, but positive in late 

lactation, with values into a wide range depending on the group of FA considered. 

These relationships support the possibilities to develop research focused on 

decreasing CH4 production in dairy cattle, key piece into global warming, while 

the dairy industry could have supplies to offer milk products with better nutritional 

quality.  

Genomic approach 

Recently, some studies have been shown that single nucleotide polymorphism 

(SNP) could be used to estimate h2. This methodology showed that SNP 

information captures the population structure and could be used as an alternative 

to traditional pedigree methods (Lassen et al., 2016). This methodology has been 

applied for FA and, the h2 estimates based on genomic or pedigree data were 

similar, but genomic h2 have shown lower standard errors (Poulsen et al., 2014). 

Thus, one initial step to develop a genomic selection is to identify those genes, 

and their location on the chromosome, responsible for the FA genetic variation. 

Several authors (Bouwman et al., 2011; Marchitelli et al., 2013; Li et al., 2014) 

have proposed lists of candidate genes affecting milk fat composition. 

The Diacylglycerol acyltransferase (DGAT) gene is implied in the FA 

composition (Schennink et al., 2007; Conte et al., 2010). When FA are attached 

to the sn-3, on the glycerol molecule, the enzyme acyl-CoA:diacylglycerol 

acyltransferase acts as a catalyst (Schennink et al., 2007). A lysine/alanine 
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substitution on the protein encoded by bovine DGAT gene was reported (Grisart 

et al., 2002); this polymorphism has been found with a strong association with FA 

profile (Conte et al., 2010). The DGAT lysine variant has been associated with a 

higher content of C16:0 and lower contents of C14:0, unsaturated C18, and CLA 

(Schennink et al., 2007; 2008), and this has also been associated with more 

saturated fat, which led to increasing the ratio SFA:UFA (Schennink et al., 2008). 

Finally, the DGAT alanine variant has been found associated with lower C10:0, 

C12:0, C14:0, C16:0, C18:0 values (Schennink et al., 2008). 

The Stearoyl-CoA desaturase (SCD) gene may change the proportion of 

saturated:unsaturated FA. It promotes the conversion of C10:0–C18:0 SFA into 

their MUFA counterparts and it is involved in the synthesis of CLA (Corl et al., 

2001). Also, it is related to the concentration of the conjugated linoleic FA 

(Garnsworthy et al., 2010). There has been a report of a non-conservative 

substitution of valine with alanine in the 293rd residue (Mele et al., 2007; Mao et 

al., 2012). The valine allele has been associated with lower C10:0, C12:0, and 

C14:0 values, and with higher C16:0, C18:0 than the alanine allele (Schennink et 

al., 2008; Stoop et al., 2009). 

The FA synthase (FASN) gene catalyzes de novo FA synthesis (Schennink 

et al., 2009a) and it has been associated with fat content in milk (Roy et al., 2006; 

Morris et al., 2007). There is evidence that FASN affects C4:0, C8:0, C10:0, 

C12:0, C14:0, C18:1, and C18:2 FA (Morris et al., 2007; Bouwman et al., 2011). 

Other candidate genes in various pathways involved in FA synthesis are: 

the sterol regulatory element binding protein gene (SREBP), that regulates 

expression of SCD and other genes to lipid and FA metabolism (Harvatine & 

Bauman, 2006); the opioid receptor-like gene (OLR1), proposed by Khatib, 

Zaitoun, Wiebelhaus-Finger, Chang, and Rosa (2007), which has been found 

related to FA transport; the PPARGC1A gene has been observed related to FASN 

(Smith, 1994) and others genes of the acetyl-CoA cycle (Mao et al., 2012), and it 
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shows association with C16:1 (Bouwman et al., 2011). These genes could explain 

partially the genetic variation in FA composition, but, it is expected that more 

genes are involved. 

The addition of genomic information to the estimation of genetic 

parameters based on pedigree and phenotypic data would allow a more accurate 

estimation of genetic parameters for FA. However, implementation of genomic 

selection on FA still faces some limitations, i. e. the number of animals with 

phenotype is small, and the number of animals genotyped is even smaller. When 

quantification of FA be a routine procedure, the genomic selection for these traits 

will be an alternative for genetic improvement. 

Conclusions 

For this review, it seems that there is enough genetic variability, supported by 

genetic parameter estimates, to develop animal selection programs focused on 

obtaining a FA profile according to what the dairy industry and society will demand 

in the future, without neglecting the health of animals. However, more research is 

necessary, which should consider a wide range of environments and breeds. 

Although the pathways of FA synthesis seem to have a greater influence on the 

estimates of h2, the method of FA quantification is the most important factor for 

better accuracy, because it determines the number of possible samples to 

analyze and consequently, the data structure. The rg between individual or 

grouped FA is strongly influenced by FA origin, whereas the rg between FA and 

dairy traits are mainly influenced by the stage of lactation. Finally, when 

quantification of FA become a routine, genomic selection would be closer to its 

implementation for FA traits. 
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Abstract 

A meta-analysis is defined as statistical analysis with the purpose of integrating findings of 
previous research. Over the years, genetic-parameter estimates (heritability and genetic 
correlation, h2 and rg) have been published for milk fatty acids (FA). Genetic-parameter estimates 
are required to calculate the response to selection and to design breeding programs. This study 
aimed to perform a meta-analysis based on random effects, combining different published genetic-
parameter estimates for FA traits in dairy cattle. A literature search was undertaken based on the 
keywords: “genetic parameters”, “heritability”, “fatty acids” and “dairy cattle”, and identification of 
other studies from references lists in published articles. Thirty-seven papers and estimates of 
genetic-parameters for 83 FA were identified. Weighted h2 and rg estimates for FA traits were 
based on few studies. Heritability estimates for saturated, unsaturated, and grouped FA traits 
ranged from 0.05 to 0.49, 0.08 to 0.42, and 0.08 to 0.45, respectively. Weighted h2 had standard 
errors lower than 0.15, in all the traits. The lowest h2 (0.05) was observed for C8 (g/dL), and the 
highest (0.49) for C20, expressed as g/100 g FA. Genetic correlation estimates ranged from -0.48 
to 0.98, and their standard errors from 0.05 to 0.33; however, these results correspond to rg that 
consider FA traits grouped by their degree of saturation, length of their carbon chain, milk 
production and quality traits. Genetic correlations were negative between FA and milk yield (kg), 
and positive between FA and protein (%) or fat (%). Genetic improvement for milk FA 
concentration is possible, as it is supported by low to medium magnitude heritability estimates 
(0.05 to 0.45). Specific correlations must be considered if these traits are included in breeding 
programs. More studies related with genetic factor for milk FA are required.  

Keywords: animal resources, heritability, literature review, milk quality, random effects 
# Corresponding author: rodolforv@correo.chapingo.mx 

Introduction 

Livestock production faces every time more complex challenges regarding sustainability. 
New breeding goals should be considered to meet these challenges (to restore functional traits, 
attend social demands and decrease livestock carbon footprint) (Boichard & Brochard, 2012). 
Over time, milk fatty acids (FA) have proven to be traits that could support to meet these 
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challenges; therefore, genetic-parameters have been estimated for these traits. Heritability (h2) 
and genetic correlation (rg) estimates are required to calculate the response to selection and 
design breeding programs. Recent studies (Pegolo et al., 2016; Petrini et al., 2016; Narayana et 
al., 2017) suggest a substantial genetic variation in FA that could be used to develop genetic 
improvement programs. Nonetheless, these genetic-parameters estimates have been derived 
from studies based on populations with different sources of variation. This factor could lead 
variability among estimates. To summarize those estimates, a meta-analysis (MA) could be an 
alternative to use them in practical situations.  

The MA is defined as a statistical analysis that uses results from individual studies with the 
purpose of integrating findings (Glas, 1976). It is used to assess the results of previous research 
to derive more precise estimates, and its benefits include consolidating a quantitative review of a 
large body of literature (Lean et al., 2009). For FA, it has been proposed that source, units and 
method used to measure FA, breed, population structure and model for data analysis could affect 
the magnitude of estimates (Mele et al., 2009; Garnsworthy et al., 2010; Tullo et al., 2014; Pegolo 
et al., 2016; Petrini et al., 2016). Therefore, given the different conditions in which the genetic-
parameters have been estimated, direct comparisons among studies can be complicated and 
could lead to observations and conclusions of limited applicability. 

In animal breeding, some MA summarizing genetic-parameters have been developed for 
different traits; for example, carcass, feeding, growth, reproduction traits (Giannotti et al., 2005; 
Del Claro et al., 2012; Diaz et al., 2014; Lean et al., 2014; McEwin et al., 2018, Rojas et al., 2018), 
among others. However, a MA of genetic-parameters for FA in dairy cattle was not found in the 
literature. Therefore, the aim of this study was to perform a meta-analysis based on random effects 
including between and within study variance components, to combine various published genetic-
parameter estimates of FA in dairy cattle. 

Materials and methods 

With the purpose of identifying original studies that publish genetic-parameters (h2 or rg) for 
individual or grouped FA traits (defined as a combination of FA×unit of measure), a literature 
search was undertaken using free search engines, and identification of other studies from 
references listed in published articles. Searches were based on the keywords: “genetic 
parameters”, “heritability”, “milk fatty acids”, and “dairy cattle”. 

Publications were included or excluded from this study based on a series of criteria:  
1) Studies published after 2000, which reported h2 or rg with their respective standard error (SE) 
for individual or grouped FA in dairy cattle. For studies in which SE were not reported, 
approximated SE were derived by using the combined-variance method (Sutton et al., 2000), 
given by 

SEij = √(∑ sik
2 nik

2
K

k=1
/ ∑ nik

K

k=1
) /n'ij 

Where SEij was the predicted SE for the published parameter estimate for the ith trait on the jth 

article that did not have a SE reported, sik was the published SE for the parameter estimated for 
the ith trait on the kth article that did have a reported SE, nik was the number of records used to 
predict the published parameter estimate for the ith trait on the kth article that did have a reported 

SE, and n'ij was the number of records to predict published parameters estimated for the ith trait 

on the jth article that did not have a reported SE.  
2) Articles must indicate breed, number of samples, FA source, method for FA quantification, units 
used to express FA, and statistical model.  
3) Only traits (FA×unit of measure) with three or more estimates (h2 or rg) were considered. 

A MA based on the random-effects model was performed in which the parameter estimates 
for all traits were assumed independent and normally distributed; it was investigated using Box-
Pierce and Shapiro-Wilk test in R software (R Core Team, 2018). Only traits meeting normality 
and independence (α = 0.05) assumptions were included. The metafor package (Viechtbauer, 
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2010) was used to fit the model. According to Rojas et al. (2018), the random-effect model could 
be written as:  

θî = θ̅ + ui + ei 

where θî was the published parameter estimated on the ith article, θ̅ was the weighted population 

parameters mean, ui was the among-study component of the deviation from the mean, assumed 

as ui~N(0, τ2), where τ2 was the between-studies variance, ei was the within-study component 

due to sampling error in the parameter estimates on the ith article, assumed as ei~N(0, σ2
e), where 

σ̂2
e was the within-study variance.  

Genetic correlations were transformed to an approximate normal scale to remove the 
dependency of the variance on the estimates, using Fisher´s transformation (Steel & Torrie, 1960) 
as follows: 

Z = 0.5log [
1 + r

1-r
] 

where r was the rg, with the standard error (sez) from: 

sez = (n-3)-0.5 

where n was the number of records. 
Correlation analyses were performed using the transformed values. The estimated 

parameters were back-transformed using: 

rw =
e2z-1

e2z + 1
 

where rw was the weighted mean rg, and z was the weighted mean for the Z transformed 
correlation. 

Heterogeneity of results among trials was quantified using Ι2 (Higgins &Thompson, 2002). 
It is defined as the proportion of total variance between studies that is due to real differences in 
size effect as opposed to chance. Ι2 was calculated as: 

Ι2(%) =
τ̂2

τ̂2 + σ̂2
e

× 100 

with τ2 and σ2
e as previously defined. Ι2 lies between 0 and 100%, and negative values were fixed 

equal to zero. An Ι2 value greater than 50% indicates a substantial heterogeneity.  

Results 

Thirty-seven papers were identified; two of them were out of the proposed period, and five 
did not have complete information, regarding the number of samples to be considered into the 
MA. The original estimates derived from four breeds (Holstein, Brown Swiss, Montebéliarde and 
Normande) and one cross (Holstein×Jersey). Results considered included five units, g/100 g fat 
(g of FA/100 g of total fat), g/100 g milk (g of FA/100 g milk), g/100 g FA (g of FA/100 g of total 
FA) g/dL (g of FA/dL of milk), wt/wt % (FA as a weight proportion of the total fat fraction). Published 
estimates were obtained either from restricted maximum likelihood (REML) or Bayesian inference.  

Heritabilities and rg estimates were identified for 83 FA; they included individual FA until 
C24, grouped FA by chain length, degree of saturation, and branched chain. The h2 results were 
clustered in saturated, unsaturated and grouped FA. The combination FA×unit of measure gave 
205 possible traits to be included. The frequency of FA traits ranged from one to 17 and from one 
to four, for h2 and rg, respectively. In addition, for rg of individual and grouped FA, the rg included 
milk production (kg), fat (%), protein (%), lactose (%), milk somatic cell count (SCC, ×1000), and 
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methane production (various units). Most of the analysed traits and correlations covered the 
requirements of normality and independence.  

The number of articles used, weighted h2 ± SE, and the I2 index of heterogeneity for each 

trait (FA×unit of measure) are shown in Table 1. Weighted h2 for saturated, unsaturated and 
grouped FA traits ranged from 0.05 to 0.49, 0.08 to 0.42, and 0.08 to 0.45, respectively, which 
could be considered from low to medium magnitude. These estimates had low SE in range 0.01 
to 0.14, 0.02 to 0.12, and 0.01 to 0.09 for the same classification, respectively. In general, 
saturated traits had slightly higher h2 than unsaturated or grouped FA traits (0.22 vs 0.20 or 0.21). 
Saturated FA traits, C8 (g/dL) and C20 (g/100 g FA) had the lowest and the highest weighted h2 

estimates; while C18:3n3 (g/100 g fat) and C16:1 (wt/wt %) were the traits with the lowest and the 
highest h2 for unsaturated traits. For the grouped FA traits, unsaturated FA (g/100 g milk) had the 
lowest h2 and short FA (g/dL) the highest. Heterogeneity among studies did not have a clear trend 
as a function of the proposed classification. However, more than 50% of the analyzed saturated 
traits, showed evidence of moderate to high heterogeneity (I2 > 50%), while for unsaturated and 
grouped FA, most traits did not show evidence of heterogeneity among studies, being more 
remarkable for unsaturated FA traits. 

The number of articles used, weighted rg ± SE, and the I2 indexes of heterogeneity for each 
rg included are shown in Table 2. Unfortunately, rg between individual FA did not cover the criteria 
considered to be included, so the findings obtained in this study correspond, mainly, to the rg 
between grouped FA, and between grouped FA and milk production and milk quality traits. Genetic 
correlations were from medium to high magnitude, -0.48 to 0.98. The SE had a more extensive 
variation than those obtained for h2, oscillating between 0.05 and 0.33. Genetic correlation with 
milk yield (milk, kg) were negative (< 0.30); while, rg with milk quality traits, such as fat (%) or 
protein (%), were strong and positive (> 0.50). In all cases, there was enough evidence for 
heterogeneity (I2 > 50%) among studies. 

Discussion 

Theoretically, milk contains at least 400 different FA (Jensen, 2002). Most of the identified 
studies included 20 or less FA, and a few of them included a greater amount of FA, up to a 
maximum of 47. Among these, the major FA (those present at or above 1% concentration) were 
the most studied, this fact could be function of the capacity in each study to identify and quantify 
FA. In addition, the large number of units used to measure FA traits was an obstacle to cover the 
criterion of number of estimates per trait to be included in the present study; therefore, most of the 
discarded traits were due to the low frequency of FA×unit of measure. Probably, this is because 
FA are novel traits within the field of genetic improvement or due to difficulties for their 
determination; thus, there is a wide area of study for these traits. Likewise, it is also a signal of the 
different points of view and methodologies with which these traits have been studied. That is the 
reason why the weighted h2 for FA traits were based on a few number of estimates. Unfortunately, 
the number of studies that reported rg decreased substantially compared with studies that reported 
h2, giving as a consequence that the weighted rg were based on a smaller number of studies than 
those for h2. 

There is little evidence that expressing FA traits as g/dL offers the highest h2 estimates 
compared with the same trait expressed in other units. The result obtained here, indicate that it is 
possible to obtain responses to selection of sufficient magnitude to be included in breeding 
programs.  

Fatty acids are traits that have shown their importance in technological properties of milk 
products (Bobe et al., 2007) or on consumer health (Connor, 2000). However, few attempts to 
include them in selection programs of dairy cattle have been developed (Gengler et al., 2012), 
among some factors, due to the difficulty to quantify them. There are some literature reviews 
related with FA (Jensen, 2002; Kay et al., 2005; Samková et al., 2012), but they focused on non-
genetic factors. Since 2006, there was an increase in studies related with genetic-parameters, 
probably due to the Soyeurt et al. (2006) proposal to use infrared technology to quantify these 
traits, and in this way, to include FA in selection programs. Arnould & Soyeurt (2009) published a 
literature review including the genetic component of FA, and whose results (h2 ranging between 
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0.00 and 0.54) were similar to results obtained here with differences in maximum value for h2 
estimate, but they only focused on the major FA. 

In addition to non-genetic factors, Samková et al. (2012) included a summary of genetic-
parameters for FA, and their results were more similar to those presented by Arnould & Soyeurt 
(2009) than results obtained here. Likewise, Samková et al. (2012) pointed out that the application 
of the animal factor for changing the composition of fat is a function of knowledge of the genetic 
variability of individual and grouped FA. A common conclusion in the studies related to the 
estimation of genetic-parameters is that it is possible to improve FA traits through genetic 
selection. Nevertheless, the need to carry out a higher number of studies related with the genetic 
factor of the content of FA should be considered. 

Thus, genetic variability of FA is essential to achieve genetic improvement; likewise, it is of 
particular interest to know the rg between FA (individual or grouped), and between FA and milk 
yield and quality traits. The relationship between FA and reproductive traits, such as days open, 
or traits related with environmental footprints, such as methane production, or enzymatic indices 
begin to be studied; unfortunately, the number of studies was still limited to be included in this MA. 
In general, the number of studies that reported rg was reduced compared with those that reported 
h2. Probably, as it was previously mentioned, because rg was not the main objective of the similar 
research. This fact highlights the need for a more significant number of studies aimed at obtaining 
rg estimates between FA and dairy traits with the aim to achieve a deeper understanding of the 
relationship among FA and milk yield and milk quality traits. Samková et al. (2012) presented an 
analytical review of rg, mainly between individual FA (g/100g g fat) and milk yield (kg/day) and milk 
fat (%, kg/day) with variable results, as a function of the considered combination of traits. 

Indexes of heterogeneity ranged between zero (all variation due to sampling error within 
trait) and 100% (reflects real differences between studies). These indexes do not depend only on 
the number of studies; however, there is a slight bias for a small number of studies (less than 
eight) (Higgins & Thompson, 2002). The I2 interpretation mainly depends on how substantial is the 
heterogeneity. Some authors who used a random-effects model considered I2 > 50% to define 
moderate to high heterogeneity (Vesterinen et al., 2014; Rojas et al., 2018). Higgins et al. (2003) 
proposed a guide for the interpretation of the I2 value; however, there is no a universal rule that 
covers definitions for “moderate” or “severe”, these depend on the size and direction of the effect 
(Higgins & Thompson, 2002). 

Results obtained with the MA procedure support main conclusions of the individual studies, 
which propose that there is enough genetic variability to develop breeding programs aimed at 
modifying the milk fat composition. However, large number of traits did not fulfill the proposed 
criteria to be included in the present analysis. It would be desirable to increase the number of 
studies focused on the estimation of genetic-parameters for FA traits. 

Conclusions 

Heritability estimates obtained in this study suggest that there is enough genetic variability 
for FA traits in dairy cattle, so genetic improvement is possible for traits considered in this study. 
If some of those traits are included into breeding programs, it is necessary to consider specific 
genetic correlations among them, and with milk yield and milk quality traits. It is expected that milk 
FA will be an integral component of dairy breeding programs in the near future. More studies are 
necessary in order to deeply explore this type of traits.    
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Table 1 Trait (FA×unit of measure), number of articles used (k), weighted heritability (h2) ± standard error (SE), and index of heterogeneity (I2) for 
each trait 

Trait k  h2 ± SE I2 (%)  Trait k h2 ± SE I2 (%)  Trait k h2 ± SE I2 (%) 

C4 (g/100 g fat) 3 0.39 ± 0.04 48.18  C14:1c9 (g/100 g fat) 6 0.24 ± 0.03 53.94  SAT (g/100 g fat) 7 0.15 ± 0.02 10.41 

C4 (g/100 g FA) 5 0.12 ± 0.07 95.37  C14:1c9 (g/100 g milk) 3 0.37 ± 0.03 0.00  SAT (g/100 g milk) 8 0.30 ± 0.02 58.21 

C4 (wt/wt %) 8 0.41 ± 0.03 0.00  C14:1c9 (g/100 g FA) 3 0.36 ± 0.04 0.00  SAT (g/100 g FA) 5 0.25 ± 0.07 94.17 

C6 (g/100 g fat) 3 0.17 ± 0.07 0.00  C16:1c9 (g/100 g fat) 3 0.19 ± 0.03 36.69  MUFA (g/100 g fat) 9 0.19 ± 0.02 35.66 

C6 (g/dL) 7 0.47 ± 0.05 95.63  C16:1c9 (g/100 g FA) 5 0.18 ± 0.05 54.29  MUFA (g/100 g milk) 8 0.11 ± 0.02 72.54 

C6 (g/100 g FA) 7 0.16 ± 0.05 85.48  C16:1 (wt/wt %) 4 0.42 ± 0.04 0.00  MUFA (g/100 g FA) 4 0.20 ± 0.01 0.17 

C8 (g/100 g fat) 3 0.19 ± 0.07 0.00  C18:1 (g/100 g fat) 3 0.14 ± 0.02 82.28  PUFA (g/100 g fat) 5 0.23 ± 0.03 0.00 

C8 (g/dL) 7 0.49 ± 0.05 97.54  C18:1 (g/100 g FA) 3 0.21 ± 0.12 97.53  PUFA (g/100 g milk) 6 0.15 ± 0.03 84.71 

C8 (g/100 g FA) 5 0.24 ± 0.03 40.06  C18:1 (wt/wt %) 3 0.30 ± 0.05 0.00  PUFA (g/100 g FA) 3 0.18 ± 0.09 96.71 

C10 (g/100 g fat) 3 0.14 ± 0.07 0.00  C18:1c9 (g/100 g fat) 7 0.17 ± 0.02 0.00  UFA (g/100 g fat) 4 0.17 ± 0.03 14.52 

C10 (g/100 g FA) 5 0.26 ± 0.04 24.63  C18:1c9 (g/100 g milk) 3 0.13 ± 0.03 0.00  UFA (g/100 g milk) 6 0.08 ± 0.01 0.00 

C12 (g/100 g fat) 4 0.09 ± 0.01 0.00  C18:1c9 (g/100 g FA) 6 0.16 ± 0.03 53.98  UFA (wt/wt %) 3 0.31 ± 0.04 0.00 

C12 (g/100 g FA) 7 0.21 ± 0.03 44.97  C18:1c9 (wt/wt %) 5 0.28 ± 0.04 0.00  SHORT (g/dL) 9 0.45 ± 0.05 99.04 

C13 (g/100 g FA) 3 0.09 ± 0.05 91.64  C18:1c11 (wt/wt %) 3 0.18 ± 0.05 0.00      

C14 (g/100 g fat) 5 0.14 ± 0.03 72.39  C18:1t11 (g/100 g fat) 4 0.11 ± 0.03 0.00      

C14 (g/100 g FA) 7 0.14 ± 0.03 40.54  C18:1t11 (g/100 g FA) 4 0.09 ± 0.06 96.04      

C14 (wt/wt %) 7 0.45 ± 0.04 67.82  C18:1t11 (wt/wt %) 5 0.24 ± 0.04 0.00      

C15 (g/100 g fat) 3 0.32 ± 0.14 55.54  C18:2c9c12 (g/100 g FA) 4 0.19 ± 0.09 96.35      

C15 (g/100 g FA) 5 0.17 ± 0.03 55.54  C18:2c9c12 (wt/wt %) 5 0.22 ± 0.03 0.00      

C16 (g/100 g fat) 10 0.17 ± 0.03 78.19  C18:2c9t11 (g/100 g fat) 7 0.13 ± 0.02 0.00      

C16 (g/100 g milk) 5 0.32 ± 0.03 69.58  C18:2c9t11 (g/100 g milk) 3 0.14 ± 0.03 0.00      

C16 (g/100 g FA) 8 0.21 ± 0.04 86.50  C18:2n6 (g/100 g fat) 3 0.15 ± 0.07 0.00      

C17 (g/100 g fat) 3 0.10 ± 0.05 0.00  C18:3n3 (g/100 g fat) 3 0.08 ± 0.08 21.12      

C17 (g/100 g FA) 3 0.24 ± 0.09 95.56           

C18 (g/100 g fat) 7 0.17 ± 0.04 75.69           

C18 (g/100 g FA) 7 0.19 ± 0.03 77.94           

C20 (g/100 g total FA) 3 0.05 ± 0.03 78.78           

C22 (g/100 g total FA) 3 0.15 ± 0.10 97.75           

SAT = saturated FA, MUFA = mono-unsaturated FA; PUFA = poly-unsaturated FA, UFA = unsaturated FA, SHORT = short carbon chain FA 
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Table 2 Weighted genetic correlations (rg) ± standard error (SE) between traits (FA×unit of 
measure), between traits and milk production traits, number of articles used (k), and index of 
heterogeneity (I2) for each correlation analysed  

Trait K rg ± SE I2 (%) 

SAT (g/100 g milk) - MUFA (g/100 g milk) 3 0.70 ± 0.06 99.62 

SAT (g/100 g milk) - UFA (g/100 g milk) 3 0.65 ± 0.15 99.98 

SAT (g/dL) - UFA (g/dL) 3 0.65 ± 0.05 99.90 

SAT (g/dL) - SHORT (g/dL) 3 0.91 ± 0.06 99.92 

SAT (g/dL) - MED (g/dL) 3 0.98 ± 0.20 99.99 

SAT (g/dL) - LONG (g/dL) 3 0.70 ± 0.08 99.96 

SAT (g/100 g milk) - Milk (kg) 4 -0.34 ± 0.06 99.84 

SAT (g/100 g milk) - Fat (%) 4 0.97 ± 0.33 100.00 

SAT (g/100 g milk) - Protein (%) 3 0.57 ± 0.07 99.72 

MUFA (g/100 g milk) - Milk (kg) 3 -0.31 ± 0.06 99.65 

MUFA (g/100 g milk) - Fat (%) 3 0.78 ± 0.05 99.56 

MUFA (g/100 g milk) - Protein (%) 3 0.50 ± 0.05 99.48 

UFA (g/dL) - SHORT (g/dL) 3 0.56 ± 0.06 99.92 

UFA (g/dL) - MED (g/dL) 3 0.62 ± 0.06 99.92 

UFA (g/dL) - LONG (g/dL) 3 0.91 ± 0.12 99.98 

UFA (g/100 g milk) - Milk (kg) 3 -0.48 ± 0.13 99.97 

UFA (g/100 g milk) - Fat (%) 3 0.74 ± 0.20 99.99 

SHORT (g/dL) - MED (g/dL) 3 0.90 ± 0.08 99.96 

SHORT (g/dL) - LONG (g/dL) 3 0.58 ± 0.10 99.98 

MED (g/dL) - LONG (g/dL) 3 0.64 ± 0.09 99.97 

SAT = saturated FA, MUFA = mono-unsaturated FA, UFA = unsaturated FA, SHORT = short carbon chain 
FA, MED = medium carbon chain FA, LONG = long carbon chain FA 
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Abstract 

Milk quality includes fat composition. This study aimed to estimate genetic parameters for milk fatty acids 

(FA) and milk component traits in Mexican Brown Swiss cattle (BS). Morning milk samples were collected 

from 317 BS cows reared in eight commercial farms. Each sample was analyzed by mid-infrared 

spectrometry for total percentage of casein, fat, lactose, protein, and total solids, and by gas chromatography 

for C4, C6, C8, C10, C14, C16, C18, C18:1cis9 and, C18:2cis9cis12 FA (g/100 g milk). (Co)variance 

components and genetic parameters were estimated using an animal model. The pedigree included 2616 

animals. Heritability estimates (h2) for milk components were high, ranging from 0.15 for lactose percent 

to 0.64 for protein percent; while h2 for FA were moderate, ranging from 0.20 for C18:1cis9 to 0.37 for C6 

and C8. Standard errors of h2 for milk components and FA, ranged from 0.12 to 0.26 and from 0.11 to 0.32, 

respectively. Casein percent and lactose percent showed low to moderate genetic correlation (rg) with FA; 

conversely, fat percent, protein percent and total solids percent showed correlation from moderate to high 

with FA, in some cases higher than 0.90. Genetic correlation between FA with a carbon chain of similar 

size was high and positive (>0.7). There is enough genetic variability for milk components and FA, 

suggesting that milk composition could be improved in a short time by selection in the studied population. 

Keywords: Gas chromatography, Heritability, Milk quality, Dairy cattle  

Introduction 

Cow’s milk is a source of lipids, protein, amino acids, vitamins, and minerals (Haug et al. 2007), 

and other constituents dispersed in water (Ozrenk and Inci 2008). Recently, milk quality has taken a key 

role in consumers´ attention due to their effort to consume healthy and functional foods. Bovine milk 

contains around 3 to 5% fat, of which 95 to 98% are triglycerides composed of glycerol and fatty acids (FA); 

of the total FA, 50 to 70% are saturated FA (SFA), 20 to 40% are mono-unsaturated FA (MUFA), and 1 to 

5% are poly-unsaturated FA (PUFA) (Jensen 2002). Research studies with humans have reported that SFA 

are related to heart diseases, weight gain, and obesity (Haug et al. 2007). Conversely, unsaturated FA 

(MUFA and PUFA) could improve insulin sensitivity and glucose tolerance (Parodi 2004), and some FA 

have shown anti-inflammatory effects (Haug et al. 2007).  
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Available studies point out the possibility of improving milk quality in terms of FA through genetic 

selection, supported by heritability (h2) and genetic correlation (rg) estimates. Heritabilities for individual 

FA, up to 24 carbons, have ranged from 0.03 to 0.36 (Pegolo et al. 2016), and from 0.05 to 0.18 for grouped 

FA (Tullo et al. 2014; Pegolo et al. 2016). According to Tullo et al. (2014), the rg between grouped FA and 

milk quality traits, such as fat, protein, casein, and lactose percent, is positive. Conversely, the increase of 

grouped FA would be reflected in the decrease of somatic cell count and unfortunately in milk yield 

(negative rg).  

A deeper understanding about the additive genetic component of FA traits will provide useful 

information to identify strategies for breeding programs. As for other countries, Brown Swiss (BS) cattle is 

a breed of economic importance for Mexico. This breed represents opportunities to produce milk with a 

high content of fat and protein in dual-purpose systems in tropical environments; unfortunately, Mexican 

genetic evaluation is limited to milk yield only (Núñez et al. 2018). Nowadays, there is interest by some 

Mexican BS breeders to produce special milk for niche markets. Mexican BS breeders have identified the 

need to increase the knowledge about the genetic component on the milk's FA profile in the Mexican BS 

cattle population. They are enthusiastic so as to take the opportunity to improve the concentration of FA as 

a possible complementary alternative into a breeding program of their breed. This study was aimed to 

estimate genetic parameters for milk fatty acids and milk production traits in Mexican Brown Swiss cattle. 

Materials and Methods 

Collection of milk samples 

Individual milk samples (60 mL) of 317 BS cows reared in eight herds of Mexico (with averages 

of lactation number 3.3 ± 2.0 and days in milk 154.8 ± 99.8; Table 1) were taken from June to August 2016. 

Milk samples occurred once per animal during the morning milking. These farms had differences in 

management. For example, 70% of the herds had one milking, and the rest had two. Only one herd had 

manual milking. Around 25% were confined herds with feeding based on corn silage, another 25% were 

grazing herds using mainly native grass, and in the remaining herds, the feeding of the herds was based on 

grazing and supplementation with commercial food during milking routine. 
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Table 1 Number of cows (n), mean ± standard deviation of lactation number and days in milk (DIM) by 

herd involved in the study 

Herd N Lactation DIM 

1 26 3.2 ± 1.5 181.9 ± 102.8 

2 47 3.4 ± 1.9 161.8 ± 90.7 

3 19 2.8 ± 2.1 147.5 ± 89.7 

4 39 4.0 ± 2.5 144.8 ± 85.4 

5 63 4.1 ± 2.1 150.3 ± 95.8 

6 18 2.9 ± 1.7 142.2 ± 126.5 

7 69 2.8 ± 1.6 153.5 ± 113.0 

8 36 2.3 ± 1.4 156.7 ± 99.9 

All collected milk samples were labeled and stored at 4 °C during their transportation until they 

reached the university´s laboratories. Individual milk subsamples were analyzed with a Milkoscan FT120 

(Foss Analytical Foss Electric, Denmark, infrared by Fourier transform) to obtain concentration (%) of 

casein, fat, lactose, protein, and total solids (TS). Another subsample was analyzed to determine the content 

of C4 (butyric acid), C6 (hexanoic acid), C8 (octanoic acid), C10 (decanoic acid), C14 (myristic acid), C16 

(palmitic acid), C18 (stearic acid), C18:1cis9 (oleic acid), and C18:2cis9cis12 (linoleic acid) FA. 

Determination of milk fatty acid profile 

The FA profile was determined by using the methylation technique proposed by Sukhija and 

Palmquist (1988) and modified by Palmquist and Jenkins (2003) and Jenkins (2010), in which FA is 

presented as methyl-esters. About 0.5 g of sample was placed in polypropylene tubes, to which 3 mL of 

sodium methoxide (0.5 M in methanol) were added. The tubes were shaken for 1 min with a vortex. Once 

shaken, the tubes were placed in a bain Marie (50 °C) for 10 min, after which time the tubes were left to 

cool for 5 min. Subsequently, 3 mL of 5% methanolic hydrochloric acid was added to the tubes, and they 

were shaken for 1 min with a vortex. The tubes were again placed in a bain Marie (75 °C) for 10 min. After 

this time, the tubes were left to cool for 10 min. Then 3.5 mL of hexane and 5 mL of 6% potassium carbonate 

were added, these were shaken for 1 minute with a vortex, after this, the tubes were centrifuged for 5 min 
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at 2500 x g. Subsequently, the supernatant was recovered and deposited in other polypropylene tubes, which 

were previously added 0.5 g of potassium carbonate and 0.1 g of activated carbon, and centrifuged for 5 

min at 1500 x g. Finally, the supernatant was recovered, and it was filtered through an acrodisc (Thermo 

Scientific, titan 44513-NN, a green filter of 17 mm and nylon membrane of 0.45 µm); it was then placed in 

a vial and stored (-5 °C) until its analysis by gas chromatography.  

For the identification and quantification of the fatty acid methyl-ester, a gas chromatograph (Gas 

chromatograph, Perking Elmer, Clarus 680, USA) coupled to a mass spectrometer (Mass spectrometer, 

Clarus SQ 8 T, USA) was used, equipped with a capillary column of silica (100 m x 0.25 mm x 0.20 μm 

thick, Sp-2560, Supelco). Results were interpreted by the WinLab software and its fragmetogram library. 

The working conditions were: injector temperature 250 °C; oven temperature 100 °C for 2 min, then it was 

brought up to 300 °C with a ratio of 7 °C min-1, and keep there for 5 min; injection volume 2 mL; 4:1 split 

injection mode; linear velocity flow control mode; column flow 1.0 mL min-1; carrier gas helium, gas linear 

velocity 37.2 cm s-1; ion source temperature 260 °C; interface temperature 280 °C; start time 10 minutes, 

with end time 50.54 min; initial m/z 30, with final m/z 500. The methyl ester peaks were identified based 

on the comparison of their retention times to those of pure standards. 

Statistical analysis 

Environmental factors included in the statistical model for the variance component estimation were 

previously tested for their significance with the GLM procedure of SAS software (SAS 2013). Genetic 

parameters and (co)variance components were estimated for each trait with an animal model using ASReml 

software (Gilmour et al. 2002). Heritability were estimated using a single-trait mixed model: 

y = Xβ + Zu + e 

where y was the vector of phenotypic records; β was the vector of fixed effects that included farm (1,2,…,8), 

lactation number (1,2,…,7), interaction farm × lactation number, and the linear effects of days in milk and 

e -0.05 × days in milk as covariates; u was the vector of random genetic additive effects [~N(0, Aσ2
A)], where 

A is the additive genetic relationship matrix among animals and σ2
A is the direct additive genetic variance; 

and e was the vector of residual random effects [~N(0, INσ2
e)], where IN is an identity matrix of order the 
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number of observations, and σ2
e is the residual variance. X and Z were incidence matrices relating 

phenotypic records to the corresponding vectors. The Asociación Mexicana de Criadores de Ganado Suizo 

de Registro supplied pedigree information of 2616 animals. Heritability (h2) was defined as: 

h2 =
σA

2

σA
2 + σe

2
 

where σA
2  and σe

2 are as previously defined.  

Genetic correlations (rg) were estimated using a bi-variate mixed model:  

[
y1

y2
] = [

X1 0
0 X2

] [
b1

b2
] + [

Z1 0
0 Z2

] [
u1

u2
] + [

e1

e2
] 

with the subscripts 1 and 2 identifying traits 1 and 2, with the same fixed and random effects and assumptions 

as those for single-mixed model. X1, X2, Z1, and Z2 were incidence matrices relating phenotypic records 

with the corresponding vectors.  

Genetic correlation was defined as:  

rg =
σA1,A2

√σA1
2  x σA2

2
 

where σA1,A2 was the additive genetic covariance between traits 1 and 2, σA1
2  and σA2

2  were additive genetic 

variances for traits 1 and 2, provided by results of the corresponding bi-variate analysis.  

Results 

Descriptive general statistics for the studied variables are shown in Table 2. Among FA, the C16, 

C18, and C18:1cis9 were found with the highest concentrations. FA composed approximately 88% of total 

fat. In general, the results showed considerable phenotypic variation. Except for lactose (%), total solids 

(%), C6, C8, and C18:2cis9cis12 (g FA/100 g milk) that had CV minor than 15%, the rest of traits evaluated 

had a CV close or superior to 20%. 

Changes in milk components and FA trough lactation are shown in Table 3. Traits with large 

variation through lactation were observed in FA with 16 or more carbons. Estimates of h2, rg, phenotypic 

correlation (rf) and standard errors (SE) are shown in Table 4. Heritability estimates for milk components 

were low to high (0.05 to 0.64), while h2 estimates for FA were moderate within a short range of values 



 

 

50 

 

(0.20 to 0.37). It was observed that h2 estimates for FA shorter than 16 carbons were slightly smaller than 

h2 for longer carbon chain FA. The magnitude of the correlation coefficients for FA varied according to the 

specific combination of FA. Genetic correlations were positive covering a wide range (0.07 to 1.00), while 

rf had a wider range, almost covering the range -1.00 to 1.00. Correlation estimates between FA with a 

similar length of carbon chain were high; the correlation decreased as the carbon chains differed more in 

size, even becoming negative. Standard errors ranged from 0.11 to 0.26 for h2 estimates, and from 0.00 to 

0.95 for correlation estimates. Some SE were larger than or almost as large as the estimate of the parameter, 

probably as a consequence of the small sample size. 

Table 2 Descriptive statistics for milk components and fatty acid (FA) content in milk of Mexican Brown 

Swiss cattle 

Trait Mean SD1 CV2 (%) Min Max 

Casein (%) 2.68 1.66 61.94 1.91 5.32 

Fat (%) 2.04 1.04 50.98 0.37 8.06 

Lactose (%) 4.49 0.62 13.81 0.21 5.33 

Protein (%) 3.41 0.62 18.18 2.39 7.00 

Total solids (%) 10.92 1.20 10.99 7.18 17.00 

C4 (g FA/100 g milk) 0.09 0.03 33.33 0.04 0.29 

C6 (g FA/100 g milk) 0.05 0.006 12.00 0.02 0.06 

C8 (g FA/100 g milk) 0.03 0.003 10.00 0.02 0.05 

C10 (g FA/100 g milk) 0.07 0.02 28.57 0.05 0.16 

C14 (g FA/100 g milk) 0.23 0.10 23.48 0.07 0.82 

C16 (g FA/100 g milk) 0.55 0.26 47.27 0.14 2.04 

C18 (g FA/100 g milk) 0.24 0.13 54.17 0.04 0.97 

C18:1cis9 (g FA/100 g milk) 0.47 0.27 57.45 0.05 2.01 

C18:2cis9cis12 (g FA/100 g milk) 0.07 0.01 14.29 0.05 0.15 

1 SD = standard deviation; 2 CV = coefficient of variation 

Discussion 

For milk components, all the phenotypic values estimated in the present study were lower than 

those reported by Tullo et al. (2014), Pegolo et al. (2016), and El-Tarabany et al. (2018) for BS. Lactose and 
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protein percent showed differences lower than 10%, casein and TS percent around 20%, while fat (%) was 

the trait with the most significant difference observed, higher than 80%, and sometimes almost 100%. In 

BS, the individual FA has been reported as g FA/g 100 g total FA (Pegolo et al. 2016), g FA/100 g fat (El-

Tarabany et al. 2018), and as a percentage to express FA grouped by their degree of saturation (Tullo et al. 

2014). Results obtained here had slight similarities with those reported, as g FA/dL, by Bastin et al. (2011; 

2012; 2013) for the Holstein breed; even by those reported by Soyeurt et al. (2008) for a mixed breed. The 

largest differences were observed in C14, C16, C18, and C18:1cis9, results from the literature were almost 

twice as high as those obtained in the present study. 

Additional to differences inherent to animals, phenotypic variability could be explained by the 

heterogeneity (lactation number and stage, feeding strategies, animal health, among others factors) among 

farms considered in the study. Several factors could explain differences in phenotypic records. However, 

the food factor plays a primary role in the differences observed. The nutritional control to modify the FA 

profile has received particular attention in recent years aiming at improving the concentration of FA, 

especially those with beneficial effects for human health. According to Schönfeldt et al. (2012), 

modifications to grain feeding systems, as well as the administration of bio-hydrogenated fats, among others, 

have been used in the industry to make these changes. Results published (Khan et al. 2012; Hristov et al. 

2013; Neveu et al. 2014) showed a variation in the effect of the inclusion of ingredients on the FA profile 

in dairy cattle. It has been pointed out in different literature reviews (Palmquist et al. 1993, Jensen, 2002, 

Elgersma et al. 2006) that feeding strategies could modify the FA profile. Although not all studies indicate 

the feeding regime of the animals included, in the present study, the animals considered were taken from 

commercial herds with some differences in food management. Also, differences in milk and fat content are 

sources of variability in FA. 

The CV published by other authors for milk composition and fat composition in BS, cover up to 

75% (Pegolo et al. 2016) so that those values obtained here are below this maximum. However, when 

comparing specifically each trait, the values reported by Pegolo et al. (2016) are lower than those obtained 

in this study. 
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Table 3 Milk components and fatty acid (FA) content during lactation for Mexican Brown Swiss cattle 

Trait 

Lactation stage, days 

30 45 75 105 135 165 195 225 255 285 301 

Casein (%) 2.82 2.51 2.69 2.53 2.55 2.60 2.64 2.72 2.77 3.11 2.68 

Fat (%) 1.89 1.94 2.06 1.62 1.93 2.01 2.12 2.08 2.23 2.11 2.48 

Lactose (%) 4.47 4.46 4.63 4.55 4.66 4.59 4.45 4.37 4.41 4.37 4.4 

Protein (%) 3.64 3.29 3.4 3.29 3.29 3.35 3.45 3.51 3.52 3.55 3.4 

Total solids (%) 10.97 10.67 11.09 10.51 10.81 10.95 11.00 10.96 11.09 10.98 11.27 

C4 (g FA/100 g milk) 0.09 0.09 0.09 0.08 0.09 0.09 0.09 0.09 0.10 0.09 0.11 

C6 (g FA/100 g milk) 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

C8 (g FA/100 g milk) 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

C10 (g FA/100 g milk) 0.07 0.07 0.07 0.07 0.07 0.07 0.08 0.07 0.08 0.08 0.08 

C14 (g FA/100 g milk) 0.22 0.23 0.24 0.19 0.23 0.23 0.24 0.24 0.25 0.24 0.28 

C16 (g FA/100 g milk) 0.51 0.53 0.56 0.45 0.52 0.54 0.57 0.56 0.60 0.57 0.66 

C18 (g FA/100 g milk) 0.22 0.23 0.24 0.19 0.23 0.24 0.25 0.25 0.27 0.25 0.29 

C18:1cis9 (g FA/100 g milk) 0.44 0.45 0.48 0.37 0.45 0.47 0.49 0.48 0.52 0.49 0.59 

C18:2cis9cis12 (g FA/100 g milk) 0.07 0.07 0.07 0.06 0.07 0.07 0.07 0.07 0.07 0.07 0.08 
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Table 4 Phenotypic (above) and genetic (below diagonal) correlations ± standard error, and heritability ± standard error (on diagonal) for milk components (%) and 

milk fatty acids (g FA/100 g milk) for Mexican Browns Swiss cattle 

Trait Casein Fat Lactose Protein TSZ C4 C6 C8 C10 C14 C16 C18 C18:1cis9 C18:2cis9cis12 

Casein 0.50±0.12 0.07±0.06 -0.24±0.06 0.89±0.03 0.41±0.06 0.13±0.70 -0.01±0.20 0.06±0.45 0.02±0.19 -0.08±0.18 -0.09±0.18 -0.04±0.18 -0.05±0.18 -0.13±0.30 

Fat 0.53±0.86 0.49±0.13 -0.03±0.06 0.07±0.06 0.88±0.03 0.57±0.47 0.12±0.18 0.12±0.35 0.16±0.17 0.31±0.16 0.28±0.16 0.34±0.16 0.35±0.16 0.19±0.25 

Lactose 0.10±0.20 0.14±0.42 0.15±0.21 -0.52±0.06 0.10±0.06 -0.53±0.49 0.07±0.18 0.21±0.35 0.01±0.18 0.00±0.16 0.00±0.17 -0.01±0.16 -0.03±0.17 -0.29±0.25 

Protein 0.92±0.04 0.56±0.06 -0.40±0.20 0.64±0.26 0.35±0.05 -0.10±0.52 0.10±0.18 0.10±0.35 0.08±0.18 0.02±0.17 0.01±0.17 0.01±0.16 0.01±0.17 0.15±0.25 

TS 0.86±0.99 0.95±0.33 0.09±0.30 0.84±0.38 0.40±0.19 0.14±0.57 0.09±0.18 0.38±0.33 0.22±0.17 0.18±0.16 0.22±0.16 0.20±0.16 0.20±0.16 0.08±0.26 

C4 0.75±0.22 0.98±0.71 0.13±0.46 0.32±0.40 0.96±0.04 0.31±0.23 1.00±0.00 1.00±0.00 0.93±0.24 0.79±0.35 0.78±0.36 -0.74±0.38 -0.74±0.39 -0.67±0.52 

C6 0.55±0.06 0.86±0.35 0.25±0.06 0.45±0.83 0.85±0.89 0.95±0.07 0.37±0.18 0.95±0.04 0.91±0.08 0.81±0.11 0.82±0.10 -0.73±0.12 -0.74±0.12 -0.89±0.18 

C8 0.16±0.09 0.93±0.95 0.20±0.35 0.32±0.12 0.99±0.03 0.72±0.24 0.96±0.56 0.37±0.20 0.99±0.01 0.88±0.06 0.68±0.06 -0.31±0.14 -0.40±0.16 -0.45±0.18 

C10 0.10±0.16 0.71±0.18 0.20±0.08 0.11±0.10 0.92±0.54 0.65±0.47 0.82±0.14 1.00±0.29 0.34±0.32 0.84±0.06 0.65±0.05 -0.26±0.09 -0.65±0.09 -0.86±0.13 

C14 0.38±0.32 0.90±0.03 0.32±0.50 0.56±0.15 0.96±0.07 0.75±0.10 0.80±0.10 0.98±0.12 0.99±0.10 0.28±0.11 0.98±0.03 -0.27±0.04 -0.57±0.04 -0.57±0.06 

C16 0.62±0.48 0.90±0.35 0.23±0.36 0.26±0.30 0.93±0.61 0.80±0.15 0.80±0.22 0.78±0.23 0.74±0.20 0.89±0.15 0.30±0.13 0.94±0.06 0.93±0.06 0.95±0.08 

C18 0.33±0.24 1.00±0.12 0.15±0.70 0.20±0.17 0.96±0.09 0.57±0.47 0.53±0.18 0.40±0.01 0.39±0.27 0.59±0.15 0.70±0.12 0.29±0.11 0.99±0.01 0.97±0.06 

C18:1cis9 0.56±0.28 0.69±0.42 0.13±0.30 0.34±0.04 0.93±0.61 0.49±0.04 0.38±0.07 0.30±0.18 0.29±0.13 0.35±0.08 0.51±0.15 0.63±0.44 0.20±0.13 0.97±0.06 

C18:2cis9cis12 0.07±0.11 0.99±0.23 0.25±0.16 0.13±0.11 0.91±0.59 0.20±0.46 0.06±0.15 0.20±0.18 0.25±0.19 0.30±0.12 0.35±0.15 0.30±0.05 1.00±0.15 0.22±0.20 

Z TS = total solids 
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The effect of lactation stage has been studied and recognized as an important source of variation 

for FA profile (Jensen 2002, Soyeurt et al. 2008, Narayana et al. 2017) due to changes in feeding strategies. 

In this study, changes in FA content through lactation were not identified. Nevertheless, these changes could 

be hidden due to the short range of DIM that the animals covered during the sampling period. It is possible 

to observe that at early-lactation most of the traits studied had lower values than at those registered in late-

lactation.  

Based on the feeding strategy, changes in FA due to the stage of lactation follow different patterns. 

For example, Bastin et al. (2011) observed, during early-lactation, a more significant variation in long-chain 

FA compared to those of medium- or short-chain; while Garnsworthy et al. (2006) did not identify 

differences in medium- or late-lactation. In general, it is recognized that with the advance of lactation the 

proportion of most of the FA-derived from synthesis de novo (FA synthesized in the mammary gland from 

4 to 12 carbons) increase, while FA from the diet decrease (Palmquist et al. 1993), attributed to the 

physiological capacity of animals to satisfy their nutritional requirements (Jensen 2002). 

With the exception of h2 estimated for lactose, that was within the published range for these trait 

(0.17 to 0.25), the rest of h2 estimated for milk components were higher than those previously reported 

estimates (Samoré et al. 2007; 2012; Tullo et al. 2014) for the same traits in BS; around 0.30, 0.13, and 0.28, 

for casein, fat, and protein percent, respectively. Estimates for TS were not identified in the literature. The 

size of the data and the edition of it could explain the observed differences. 

In general, a decrease in the magnitude of the h2 was observed as the FA carbon chain length 

increases. The differences between h2 estimates for FA could be associated with their biosynthesis pathway 

(Garnsworthy et al. 2010; Bouwman et al. 2011; Gion et al. 2011). Bovine FA originate from two primary 

sources: de novo synthesis and dietary uptake of preformed FA. Almost all of the C4:0 to C14:0 and 

approximately half of the C16:0 (Bauman and Griinari 2003) are synthesized de novo, whereas the 

remaining C16:0, and higher carbon chain FA are mainly derived from the diet (Bauman and Griinari 2003), 

which could vary depending on fat composition (Garnsworthy et al. 2010). According to Garnsworthy et al. 

(2010) and Bastin et al. (2011), de novo synthesized FA have a stronger genetic control (expected to have a 

higher h2) than milk FA-derived from the diet and body fat mobilization. However, lower h2 estimates for 

long-chain FA indicates that processes involved in the inclusion of these FA, such as biohydrogenation in 
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the rumen, absorption in the intestine, or mobilization of FA from adipose tissue, may be partially influenced 

by genetic control (Bastin et al. 2011). 

For BS, rf including lactose had been reported as negative, or even close to zero (from -0.18 to 

0.04; Samoré et al. 2007; 2012). The rest of the correlations among milk components obtained here were 

lower than what was reported for BS (Samoré et al. 2007; 2012). As rf, in other studies for BS (Samoré et 

al. 2007; 2012), the rg including lactose had been reported negative (from -0.08 to -0.03), except for rg 

between casein and lactose (from 0.04 to 0.06). The rest of rg among other milk components (casein, fat, 

protein, TS) agree with the meaning of the published estimates (Samoré et al. 2007; 2012). The highest 

similarity was observed in rg between protein and casein, and it was generally higher than 0.90. As 

previously mentioned, studies that report TS content were not identified for BS. Studies reporting rg between 

individual FA and milk components for BS were not identified in the literature. The only one identified for 

BS (Tullo et al. 2014) was focused on FA grouped by their degree of saturation. Results of rg, in addition to 

rf, among milk components and individual FA, expressed as a concentration in milk (g FA/dL milk) have 

been reported mainly for Holstein cattle (Bastin et al. 2011; 2012; Petrini et al. 2016). However, even for 

Holstein, no studies were identified that report relationships between individual FA and casein or TS.  

Correlation estimates between lactose and individual FA (%) have limited published reports 

(Petrini et al. 2016). In this case, the rg obtained here was superior to those reported by Petrini et al. (2016); 

however, the rf, in both cases, were close to zero. When FA was reported as a concentration in milk (g FA/dL 

of milk; Bastin 2011; 2013), rg among fat (%) and individual FA in the present were similar, higher (20%) 

for C4, C8, and C18, than those reported in the literature for Holstein. However, rf were not reported in the 

studies previously discussed. Similar to the trend observed between fat (%) and FA, rf between protein (%) 

and individual FA have limited reports. However, rg among protein (%) and FA, obtained in the present 

study, had magnitudes comparable with those reported by Bastin et al. (2011; 2013), with the exception of 

the correlation obtained between C8, C10, and C16 with protein (%), which were lower (around 50%) to 

what was reported by authors above mentioned. 

In general, rg estimates among individual FA could be comparable in magnitude and direction with 

those reported by Bastin et al. (2011; 2013), with slight differences for that rg including C4 or C6, where the 

estimates obtained in the present study were lower; and the specific correlation between C14 and C18, whose 
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magnitude in this study was higher than that reported in the literature by the previously mentioned authors. 

It is possible to observe that the rg among FA with similar chain length showed positive correlations of large 

magnitude (>0.8 and even close to 1.0), the magnitudes of estimates decrease as FA of different sizes are 

related. Genetic correlations among FA illustrates similarities and differences in their origin, and it is based 

on the length of the carbon chain, which is explained by the metabolic pathway of FA synthesis. Although 

there are differences in the definition of FA and the model used for data analysis, results of this study support 

the direction of the association between FA previously reported (Bastin et al. 2011; 2013). 

In addition to other traits unexplored (for example, production of methane gas) in dairy cattle, FA 

has an excellent opportunity to be part into future breeding programs. However, before being added to these 

programs and due to the lack of published reports, it is necessary more research focused on correlation, 

genetic and phenotypic, among FA and milk components in order to have a deeper understanding of these 

relationships and thus be able to apply them to meet the different demands of society for functional dairy 

products. 

There are some proposals (Hayes and Khosla 1992; Pascal et al. 1996) of the ideal composition of 

FA that would have positive effects on human health, and this proportion should be one-third of saturated, 

one-tenth of poly-unsaturated and the rest of mono-unsaturated FA. However, due to the different functions 

that FA play in human health, the properties that they transfer to dairy products and their relationship with 

other productive traits, there are still some questions to be resolved before FA traits are included in a 

selection program. Among the factors that need to be studied or to have a higher number of studies, for 

example, is the economic weighting of these traits in breeding programs or the acceptance of dairy products 

with different FA profiles by consumers. When there are answers to the different scenarios of these 

questions, genetic improvement of FA will take a direction more in line with the needs of consumers, so 

more studies of these traits should be carried out. 

According to the results of this study, there is enough genetic variability for FA in the studied 

population, suggesting that milk fat composition could be changed by directional selection. Due to the 

relationship among FA, simultaneous evaluations should be considered when these traits are evaluated 

genetically. Also, the present work evidences the need for this type of studies in Brown Swiss cattle. 
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Abstract 

Nitrogen plays an important role in the metabolism of living organisms due to the variety of physiological 

functions involving molecules that contain it. This study aimed to estimate genetic parameters for milk 

nitrogen fractions and the casein:protein ratio in a Mexican Brown Swiss population. Milk samples from 

317 cows were used to determine total (TN), non-protein (NPN), and non-casein (NCN) nitrogen. Then, 

crude (CP), true (TP) and whey (WP) proteins, and casein (Cas) percentages were obtained. In addition, the 

ratios (%) Cas:CP (CCP) and Cas:TP (CTP) were calculated. (Co)variance components and genetic 

parameters were estimated using an animal model. The pedigree included 2616 animals. Heritabilities were 

obtained from single-trait and genetic correlations from bi-variate analyses. The variation among cows was 

large for the studied traits. Heritability estimates could be regarded as high (>0.7) for NCN, WP, CCP, and 

CTP, while for the rest of traits, the estimates were from moderate to low magnitude. Genetic correlations 

estimates differed in magnitude, ranging from -0.9 to 0.9. There is enough additive genetic variability to 

achieve genetic improvement for the traits studied; therefore, they could be considered in a breeding 

program for the studied population.  

Keywords: Casein, Casein:Protein ratio, Total nitrogen, Whey protein  

Introduction 

Human population is increasing and this would increase the need for animal products of high 

nutritional quality, such as bovine milk. Among milk components, proteins are important for the human 

population, and although they are not considered as an energy source, their energy contribution promotes 

the reduction of fat in dairy products, which is one of the reasons why market niches have emerged. There 

are opportunities to feed both very young and older adults with products fortified with protein. Likewise, 

athletes need proteins for regeneration and muscle recovery. Hence, milk composition must be an important 

part of any genetic improvement program in dairy cattle.  

According to Rodrigues et al. (2010), Ruska and Jonkus (2014), and Rafiq et al. (2016), protein 

(%) in milk could be estimated from the total amount of nitrogen times 6.38. Milk crude protein (CP) is 

composed of casein (77.2%; Cas), whey protein (17.5%; WP), and non-protein nitrogen (5.2%; NPN) (Guo 

et al. 2007). Caseins play an important role in cheese production (Emmons et al. 2003). Whey protein is 
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dispersed in the serum, but do not contribute to cheese (Samoré et al. 2012). It has all essential amino acids, 

showing immune-enhancing properties, ability as antioxidant, and prevention of cardiovascular diseases and 

osteoporosis (Marshall 2004); it is also an ingredient in infant formula, performance beverage, and 

supplements (Lagrange et al. 2015). The NPN consists of amino acids, peptides, creatinine, and other 

constituents (DePeters and Ferguson 1992). Casein and WP, synthesized in the mammary gland and pre-

formed in the blood (DePeters and Fergusson, 1992), compose the true protein (TP); a higher concentration 

of these protein fractions is desirable in the dairy industry (Emmons et al. 2003). 

Nowadays, breeding programs should consider supplying high-quality animal products at a 

reasonable price (Berry 2013). There is a wide field of study in milk components to cope with the current 

demands of the human population. For this reason, studies on milk composition are focusing on protein 

fractions from different perspectives (Bonfatti et al. 2011; Rafiq et al. 2016). Studies with Brown Swiss 

(BS) cattle, on milk proteins, indicate the existence of genetic variability among cows for protein traits 

(Ghiroldi et al. 2004; Samoré et al. 2007; 2012). These studies report estimates of heritability (h2) from 0.23 

to 0.31, and from 0.22 to 0.40 for protein and Cas (%), and genetic correlations (rg) between these traits 

close to 1.0. This breed is of economic importance in Mexico, but genetic evaluation is limited to milk 

production (Núñez et al. 2018). There is an interest by some BS Mexican breeders to produce special milk 

for market niches; however, there is no information about the additive genetic variability of other traits that 

include other measurement processes (as nitrogen fraction), preventing their inclusion as a possible 

alternative into breeding programs. Therefore, the objective of this study was to estimate genetic parameters 

for milk nitrogen fractions and casein:protein ratio in a Mexican Brown Swiss population.  

Materials and methods 

Collection and preparation of milk samples 

Individual milk samples (240 mL) of 317 BS cows reared in eight commercial herds of Mexico 

(with averages of lactation number 3.3 ± 2.0 and days in milk 154.8 ± 99.8; Table 1) were taken from June 

to August 2016. Milk sampling occurred once per animal during the morning milking. These farms had 

slight differences in management. For example, 70% of the herds had one milking and the rest had two. 

Only one herd had manual milking. Around 25% were confined herds with feeding based on corn silage, 
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another 25% were grazing herds using mainly native grass, and the remaining herds fed the cows based on 

grazing and supplementation with commercial food during the milking routine.  

Table 1 Number of cows (n), means (± standard deviation) of lactation number and days in milk (DIM) by 

herds involved in the study 

Herd n Lactation DIM 

1 26 3.2 ± 1.5 181.9 ± 102.8 

2 47 3.4 ± 1.9 161.8 ± 90.7 

3 19 2.8 ± 2.1 147.5 ± 89.7 

4 39 4.0 ± 2.5  144.8 ± 85.4 

5 63 4.1 ± 2.1 150.3 ± 95.8 

6 18 2.9 ± 1.7 142.2 ± 126.5 

7 69 2.8 ± 1.6 153.5 ± 113.0 

8 36 2.3 ± 1.4 156.7 ± 99.9 

Milk samples were labeled and formaldehyde was added (2 mL L-1) as a preservative. After collection, milk 

samples were stored at 4 °C until their analysis. Milk samples were prepared according to the Norm ISO 

8968-1:2001 (ISO-IDF 2001). 

Total nitrogen (TN). Ten mL of milk were introduced in a 100 mL volumetric flask. Distilled water was 

added until complete the volume. Then, the flasks were shaken by 30 s and 2 mL aliquots were taken to 

determine TN.  

Non-protein nitrogen (NPN). In a 50 mL volumetric flask, 20 mL of milk and 20 mL of 24% TCA were 

introduced. The flasks were shaken by 30 s. The final volume was adjusted with 12% TCA; the flasks were 

shaken and filtered with Whatman® filter paper number 542. Finally, 2 mL aliquots were taken to determine 

NPN. 

Non-casein nitrogen (NCN). Twenty mL of milk were introduced in a 50 mL volumetric flask, 20 mL of 

distilled water and 2 mL of 10% AcOH were added. The flasks were shaken by 30 s and let stand for 5 min. 

Then, 2 mL of 1 M NaOAc were introduced into the flask. The final volume was adjusted with distilled 
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water. The flask was shaken and filtered with Whatman® filter paper number 542. Two mL aliquots were 

taken to determine NCN. 

Laboratory determination and studied traits 

Determination of nitrogen content. The TN, NPN and NCN contents (g 100 g-1), were determined by 

Kjeldahl method, according to standard protocols. 

Studied traits. After determination of nitrogen content, they were converted to crude (CP), true (TP) and 

whey (WP) proteins, and casein (Cas) using: 

CP (%) = TN × 6.38 

TP (%) = (TN - NPN) × 6.38 

Cas (%) = (TN - NCN) × 6.38 

WP (%) = (NCN - NPN) × 6.38 

The ratios Cas:CP (CCP) and Cas:TP (CTP) were calculated as proposed by Lacroix et al. (1996): 

CCP (%) = [(TN - NCN) / TN] x 100 

CTP (%) = [(TN - NCN) / (TN - NPN)] x 100  

Statistical analyses 

Genetic parameters and (co)variance components were estimated for each trait with an animal 

model, using ASReml software (Gilmour et al. 2002). Heritability was estimated using a single-trait mixed 

model: 

𝒚 = 𝑿𝜷 + 𝒁𝒖 + 𝒆 

where y was the vector of phenotypic records; 𝜷 was the vector of fixed effects that included farm (1,2,…,8), 

lactation number (1,2,…,7), the interaction farm × lactation number, and the linear effects of days in milk 

and e -0.05 × days in milk as covariates; 𝒖 was the vector of random genetic additive effects [~N(0, A𝜎2
𝐴)], 

where A is the additive genetic relationship matrix among animals and 𝜎2
𝐴 is the direct additive genetic 

variance; and e was the vector of residual random effects [~N(0, IN𝜎2
𝑒)], where IN is an identity matrix of 

order the number of observations, and 𝜎2
𝑒 is the residual variance. X and Z were incidence matrices relating 
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phenotypic records to the corresponding vectors. The Asociación Mexicana de Criadores de Ganado Suizo 

de Registro supplied pedigree information of 2616 animals. Heritability was defined as: 

ℎ2 =
𝜎𝐴

2

𝜎𝐴
2 + 𝜎𝑒

2
 

where 𝜎𝐴
2 and 𝜎𝑒

2 were previously defined.  

Genetic correlation (rg) was estimated using a bi-variate mixed model:  

[
𝒚𝟏

𝒚𝟐
] = [

𝑋1 0
0 𝑋2

] [
𝑏1

𝑏2
] + [

𝑍1 0
0 𝑍2

] [
𝑢1

𝑢2
] + [

𝑒1

𝑒2
] 

with the subscripts 1 and 2 identifying traits 1 and 2, with the same fixed and random effects and assumptions 

than for a single-mixed model. X1, X2, Z1, and Z2 were incidence matrices relating phenotypic records with 

the corresponding vectors.  

Genetic correlation was defined as:  

𝑟𝑔 =
𝜎𝐴1,𝐴2

√𝜎𝐴1
2  𝑥 𝜎𝐴2

2
 

where 𝜎𝐴1,𝐴2 was the additive genetic covariance between traits 1 and 2, 𝜎𝐴1
2  and 𝜎𝐴2

2  were additive genetic 

variances for traits 1 and 2, provided by results of the corresponding bi-variate analysis.  

Results 

Descriptive general statistics for studied variables are shown in Table 2 and changes through days 

in milk in Table 3. Phenotypic variability was detected for all traits, especially in WP (%) and NCN (g 100 

g-1) (coefficient of variation, CV, > 70%). These two traits also showed high variability throughout days in 

milk but a specific trend was not observed, and NPN (g 100 g-1) showed values almost constantly throughout 

days in milk. The traits with the lowest variability were CCP and CTP (%) ratios (CV = 10%).  

Estimates of h2 and standard errors (SE) are shown in Table 4. Estimates of h2 could be considered 

high (>0.40) for NCN, NPN (g 100 g-1), WP, CCP, and CTP (%); meanwhile, for TN (g 100 g-1), CP, TP 

and Cas (%) could be considered as medium (0.20 to 0.40). Standard errors for h2 estimates were high, 

between 0.13 and 0.28; for CP, their SE was almost as large as the estimate of the parameter. It should be 

noted that the h2 estimates for NCN (g 100 g-1), TP, WP, CCP, CTP (%) were different from zero.  

 



 

 

67 

 

Table 2 Descriptive statistics of nitrogen fractions and protein content, and the casein to protein ratio in 

milk of Mexican Brown Swiss cattle 

Trait Mean SD1 CV2 Min Max 

Total Nitrogen (g 100 g-1) 0.51 0.06 12 0.34 0.63 

Non-protein nitrogen (g 100 g-1) 0.02 0.01 25 0.01 0.05 

Non-casein nitrogen (g 100 g-1) 0.07 0.05 71 0.04 0.36 

Crude protein (%) 3.24 0.39 12 2.19 4.01 

True protein (%) 3.11 0.39 13 1.99 3.89 

Casein (%) 2.77 0.43 16 1.26 3.65 

Whey protein (%) 0.34 0.29 85 0.12 2.20 

Casein:Crude protein (%) 85.36 8.60 10 35.04 93.02 

Casein:True protein (%) 89.11 8.79 10 36.34 96.10 

1 SD: standard deviation; 2 CV: coefficient of variation 

Phenotypic (rf ± SE) and genetic (rg ± SE) correlations (Table 4) had a wide variation, covering 

almost the entire range -1 to 1. Standard errors for rf were equal or lower than 0.06 for all correlations, while 

SE for rg estimates covered a wider range, and even some correlations had SE > 1. For some rg estimates 

convergence was not attained. 

Discussion 

Total nitrogen content (g 100 g-1) obtained in the present study was lower than that reported by 

Cerbulis and Farrell (1975; 0.63 g N 100 mL-1 milk) and Carroll et al. (2006; 0.57 g N kg-1 milk) for BS 

cattle. Non-protein nitrogen in milk could be a quality parameter and indicator of nutritional practices. It is 

composed around 50% of urea (Samoré et al. 2007). For BS, NPN represents an average of 5.4% from TN, 

which could mean losses of up to 0.18% of CP (%) (Cerbulis and Farrel 1975). From the present study, 

NPN was 4.13% of TN, representing a loss of 0.14% CP. This value was lower than those reported by 

Freitas et al. (2010; 0.19%), Ruska and Jonkus (2014; 0.20%), and Rafiq et al. (2016; 0.33%) for other 
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breeds. Non-casein nitrogen has been reported as a response to substitution of ingredients in the diet. 

Different sources of ionophores (Rodrigues et al. 2010), nitrogen (Aquino et al. 2008) or fat (Freitas et al. 

2010) have not had an influence on NCN. Results obtained by Freitas et al. (2010; 0.60%), Rodrigues et al. 

(2010; 0.77%) and Rafiq et al. (2016, 0.77%) were higher than those obtained in the present study.  

Crude protein (%) in milk of BS cattle has been reported around 3.6% (Samoré et al. 2007; 

Cecchinato et al. 2011; Samoré et al. 2012), which is 11% higher than results from this study (Table 2). 

However, minimum (2.2%) and maximum (4.0%) estimates obtained here are within the range for BS, 1.7 

to 5.9% (Malossini et al. 1996; Ghiroldi et al. 2004; Cecchinato et al. 2011). Casein comprises between 76.0 

and 86.0% of CP (DePeters and Cant 1992) or 82.0% of TP (Cerbulis and Farrell 1975). In this study, Cas 

represented 85.4 and 89.1% of CP and TP, respectively. Cas content was around 2.8%, estimate that agrees 

with the range (from 0.8 to 4.8%) and average published for BS (Ghiroldi et al. 2004; Samoré et al. 2007; 

Cecchinato et al. 2011). According to DePeters and Fergusson (1992), 16.5% of TN is associated with WP, 

value that was 36% larger than the average obtained in the present study. 

Casein:protein ratio could be an indicator of the suitability of milk for the industry (Carroll et al. 

2006). For dairy cattle, CCP ranged between 58.0 and 90.0% (Ghiroldi et al. 2004; Cecchinato et al. 2011), 

and between 76.0 and 85.0% for CTP (Lacroix et al. 1996; Aquino et al. 2008; Reid et al. 2015). 

Casein:crude protein ratio was >8% than published values for BS (around 78%; Malossini et al. 1996; 

Samoré et al. 2012).  

In general, similarity among findings in the present study and those from literature reflects the 

common origin of BS. Differences among results could be a consequence of environmental conditions and 

experimental design in each study; it could include lactation number and lactation stage, nutritional 

management, animal health, season, number of herds, sampling conditions, quantification methodology, 

among others. These factors could generate fluctuation in the components studied, so more studies covering 

a wider variety of conditions should be carried out. 

Studies using similar laboratory techniques have reported low CV (≤ 10%) for CP, TP, and Cas 

(%). For example, Aquino et al. (2008) reported CV similar to the estimates of the present study; they 

determined that WP had the highest (22%) and CTP the lowest (4%) CV. Conversely, NCN had a higher 

CV in the present study, but not in estimates of Aquino et al. (2008), where their CV was intermediate. Both 
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studies demonstrating heterogeneity of NCN. Research using infrared technology (Ikonen et al. 2004; 

Samoré et al. 2007; Cecchinato et al. 2011) reported similar or even lower CV for CP and Cas (%) than 

those obtained using the Kjeldahl method. 

Similar to findings published by Ghiroldi et al. (2004), Bonfatti et al. (2011), and Reid et al. (2015), 

phenotypic variability of traits studied by herd, lactation and days in milk (Tables 2 and 3) for this BS 

population confirmed the need to include those effects in the estimation of genetic parameters of the studied 

traits.  

The h2 estimate for CP (%) in this study (Table 4) was below the range, 0.28 to 0.31, found in the 

literature for BS (Samoré et al. 2007; Cecchinato et al. 2011; Samoré et al. 2012). Conversely, h2 estimate 

for Cas (%) in our study was above the range, 0.22 to 0.31, published for BS (Ghiroldi et al. 2004; Samoré 

et al. 2007; 2012). In the present study, h2 for CCP (%) was higher than estimates obtained by Samoré et al. 

(2012), who reported a low h2 estimate (0.11). Differences in estimates could be due to the method used to 

fully capture variability in these traits. According to estimates of the present study, the additive genetic 

variability for TN, NPN, NCN and WP is enough to achieve a response to selection. However, these traits 

have not been explored within the dairy industry, and although their inclusion in future breeding programs 

still faces limitations, as a faster method of measurement, and there is a vast opportunity to study them and 

demonstrate the advantages of their inclusion into breeding programs.  

The use of TP, Cas, CCP or CTP, instead CP in breeding programs could represent advantages, 

since the use of TP, for example, could reduce fluctuations due to NPN; if the objective were Cas, it would 

allow larger response to the selection due to the larger h2 estimates, and even would support nutritional 

programs if CTP or CCP were used. Selection of these traits instead CP could improve the technological 

and nutritional properties of milk products, besides it would reflect more accurately the economic value of 

milk. 
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Table 3 Nitrogen fraction (mean ± SD) milk composition during lactation for Mexican Brown Swiss cattle 

 Lactation stage, days 

Trait1 30 45 75 105 135 165 195 225 255 285 301 

TN (g 100 g-1) 0.51±0.06 0.50±0.06 0.50±0.06 0.49±0.04 0.51±0.06 0.49±0.06 0.52±0.07 0.53±0.08 0.51±0.07 0.52±0.05 0.53±0.06 

NPN (g 100 g-1) 0.02±0.00 0.02±0.00 0.02±0.01 0.02±0.01 0.02±0.00 0.02±0.01 0.02±0.00 0.02±0.01 0.02±0.00 0.02±0.01 0.02±0.00 

NCN (g 100 g-1) 0.07±0.04 0.08±0.05 0.08±0.07 0.07±0.04 0.06±0.04 0.07±0.05 0.07±0.03 0.09±0.06 0.07±0.03 0.07±0.04 0.07±0.04 

CP (%) 3.24±0.41 3.17±0.36 3.20±0.37 3.11±0.28 3.27±0.38 3.13±0.39 3.33±0.42 3.35±0.49 3.27±0.47 3.30±0.31 3.35±0.38 

TP (%) 3.10±0.42 3.03±0.37 3.06±0.37 2.97±0.28 3.14±0.38 3.00±0.41 3.20±0.41 3.21±0.50 3.14±0.46 3.18±0.31 3.22±0.38 

Cas (%) 2.78±0.40 2.66±0.43 2.67±0.51 2.63±0.38 2.86±0.39 2.69±0.36 2.88±0.39 2.76±0.56 2.83±0.46 2.87±0.36 2.88±0.40 

WP (%) 0.33±0.27 0.36±0.31 0.39±0.43 0.34±0.27 0.28±0.25 0.31±0.30 0.32±0.20 0.45±0.35 0.31±0.22 0.30±0.23 0.34±0.26 

CCP (%) 85.85±7.34 84.13±9.58 83.63±12.51 84.52±8.66 87.39±7.16 86.05±7.94 86.61±5.74 82.22±10.29 86.35±6.50 87.09±7.00 85.87±7.37 

CTP (%) 89.63±7.62 88.04±9.87 87.56±12.92 88.43±8.85 91.04±7.19 90.11±8.10 90.14±5.74 86.08±10.63 89.98±6.74 90.44±7.03 89.49±7.49 

1 TN: total nitrogen; NPN: non-protein nitrogen; NCN: non-casein nitrogen; CP: crude protein; TP: true protein; Cas: caseins; WP: whey protein; CCP: casein:crude 

protein ratio; CTP: casein:true protein ratio 
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Table 4 Phenotypic (above diagonal) and genetic (below diagonal) correlations ± standard error, and heritability ± standard error (on diagonal) for nitrogen fractions 

and protein contents, and the casein to protein ratio for Mexican Brown Swiss cattle 

Trait1 TN NPN NCN CP TP Cas WP CCP CTP Fat TS 

TN 0.30±0.19 -0.04±0.06 0.23±0.06 1.00±3E-08 1.00±0.01 0.73±0.04 0.25±0.06 -0.04±0.06 -0.11±0.06 0.20±0.06 0.26±0.06 

NPN -0.13±0.39 0.41±0.22 0.30±0.05 -0.05±0.06 -0.13±0.06 -0.25±0.06 0.19±0.06 -0.32±0.05 -0.20±0.06 -0.06±0.06 -0.01±0.06 

NCN 0.40±0.24 0.54±0.18 0.81±0.25 0.24±0.06 0.21±0.06 -0.49±0.05 0.99±0.01 -0.98±0.01 -0.98±0.01 0.11±0.06 0.12±0.06 

CP 0.98±0.24* -0.14±0.49 0.81±1.77 0.23±0.24 1.00±0.01 0.74±0.04 0.25±0.06 -0.04±0.06 -0.12±0.06 0.20±0.06 0.26±0.06 

TP 0.98±0.24* -0.57±0.69 0.72±1.97 1.00±0.50* 0.30±0.13 0.75±0.04 0.23±0.06 -0.01±0.06 -0.09±0.06 0.20±0.06 0.26±0.06 

Cas 0.87±0.05 -0.05±1.80* -0.89±0.20 0.87±0.05 0.88±0.05 0.30±0.16 -0.47±0.05 0.64±0.04 0.59±0.05 0.10±0.06 0.15±0.06 

WP 0.76±1.39* 0.36±0.16 1.00±0.00 1.00±0.33* 0.57±0.84 -0.99±0.25* 0.80±0.25 -0.97±0.01 -0.99±0.01 0.12±0.06 0.12±0.06 

CCP 0.20±0.33 -0.59±0.19 -0.99±0.00 0.23±0.48 0.39±0.75 0.98±0.20* -0.99±0.04 0.73±0.25 0.99±0.01 -0.08±0.06 -0.07±0.06 

CTP -0.10±0.42 -0.40±0.18 -0.99±0.00 -0.16±0.80 -0.02±0.77* 0.92±0.12 -1.00±0.00 1.00±0.20 0.71±0.25 -0.10±0.06 -0.08±0.06 

Fat 0.66±0.42 -0.36±1.03 0.36±0.45 0.30±0.57 0.35±0.60 0.99±0.42* 0.59±0.56 1.00±1.29* 0.99±1.36* 0.11±0.28 0.68±0.05 

TS 0.72±1.54* 0.36±1.29 0.26±0.53 0.60±0.85 0.61±1.05 0.61±1.23 0.26±0.54 -0.31±1.24 -0.30±1.21 0.94±0.27 0.18±0.24 

1 TN: total nitrogen; NPN: non-protein nitrogen; NCN: non-casein nitrogen; CP: crude protein; TP: true protein; Cas: caseins; WP: whey protein; CCP: casein:crude 

protein ratio; CTP: casein:true protein ratio; Fat (%), TS: total solids (%) 

* Convergence was not attained 
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For a trait to be considered as an objective in selection programs is that it must be important, 

preferably, economically. However, it could have social value. A greater obstacle for including these traits, 

without apparently economic value, is the inability to identify genetic differences at a reasonable cost (Berry 

2013). Many researchers believe that it is too much work to measure milk components by chemical methods, 

which could be a limitation to generate large datasets for breeding programs, which need relatively large 

and accurate phenotypic datasets for estimation of (co)variance components (Berry 2013). For these reasons, 

the trend is to replace chemical methods with instruments that allow faster measurements (O’Sullivan et al. 

1999), such as infrared analyzers. Comparisons between reference methods and infrared analyzers point out 

the great similarity, with correlation around 0.9 for fat and protein (Šustová et al. 2007). Whether or not 

phenotypic data are available, measures on genetically correlated traits, indirect selection or merely 

collecting the necessary data could be an alternative (Berry 2013). Nowadays, another option is to use 

genotype information, with the additional advantage of obtaining a smaller SE (Lassen et al. 2016). 

Although the Kjeldahl method could be regarded as old, and despite negative factors of this 

(hazardous, labor intense and expensive; O’Sullivan et al. 1999; Šustová et al. 2007), results of this method 

could be used as additional phenotypic data for the genetic evaluation of Mexican BS, with the advantage 

of the precision that it has for estimating components. However, it is recognized the need to join results 

from Kjeldahl method and infrared technology to increase the amount of data. Using both datasets would 

allow periodic monitoring of the calibration curves for infrared measurement (O’Sullivan et al. 1999) so 

that it reflects the true conditions of the Mexican production systems. 

The relationship between CP and Cas (Table 4) has been probably the most studied in dairy cattle; 

even in BS, the rg > 0.9 (Ghiroldi et al. 2004; Samoré et al. 2007; 2012). These results are higher to those 

observed in our study, while correlation estimates between CP and TP (%) in the present study were similar 

to those reported by Samoré et al. (2012). Increases of TN in milk would likely increase other nitrogen 

fractions, as suggested by a positive rg estimated (<0.4) in this study between TN and NCN (g 100 g-1), and 

NCN and NPN (g 100 g-1). The rg between TN and NPN (g 100 g-1) was negative but low. The trend of 

estimates of phenotypic correlations (rf) was similar, although of lower magnitude. Increases in Cas (%) 

mean decrease in WP (%) (rg ≈ -0.90, and rf ≈ -0.40), and in NPN (g 100 g-1) (rg ≈ -0.04, and, rf -0.25). 

Casein (%) had positive rg and rf (>0.60) with TN (g 100 g-1), CP, TP, CCP, and CTP (%). In this way, 
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negative rg (≈0.80) and rf (≈0.50) were expected between Cas (%) and NCN (g 100 g-1). The rg estimates for 

CCP or CTP with CP or TP (%) were low. On the other hand, WP (%) had a negative rg and rf close to one 

with CCP and CTP, which could suggest that both ratios depend more on Cas than on protein content in 

milk. 

Rafiq et al. (2016) studied nitrogen fractions similar to the present study. They reported positive 

correlation estimates (0.10 to 0.86) among NCN, CP, TP, Cas, and WP; however, they used information of 

Sahiwal cattle. Besides, the sample size used by Rafiq et al. (2016) might not be representative. The most 

common rg or rf studied among nitrogen fraction and dairy traits include fat (%) with CP (%). Correlations 

estimated here (Table 4) were lower than those reported in the literature (Ikonen et al. 2004; Samoré et al. 

2007; 2012), and ranged from 0.63 to 0.71, and from 0.28 to 0.40, for rg or rf, respectively.  

Modifying the environmental component to improve the traits studied could be the fastest option; 

however, these changes could be reduced or even lost if the environmental conditions are not kept 

permanent. On the other hand, selection programs offer permanent results, at a lower speed. Given the 

objective of offering products for a niche market, it is required positive changes over time, so genetic 

improvement represents a good option to face the new challenges. Considering the request of Mexican BS 

breeders to study alternative traits, and although there is a lack of information on genetic parameters, the 

inclusion of alternative traits that influence economic, environmental, social or farm management profit 

could be fruitful.  

Based on heritability estimates obtained in the present study, there is significant additive genetic 

variability for total, non-protein and non-casein nitrogen; crude, true and whey proteins; casein, and for 

casein:crude protein and casein:true protein ratios. These traits could be considered for genetic improvement 

in the studied Mexican Brown Swiss population. It is recommended to continue studying the considered 

traits, but including a higher number of farms and animals, and identifying the perspective of cost-benefit 

of including this type of traits in a selection program.  
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Abstract 

In livestock pedigrees, unknown parents could be assigned to phantom parent groups (PPG). This paper 

aimed to compare the effect of grouping strategies for unknown parents on genetic evaluation of growth 

traits in Mexican Braunvieh cattle. Phenotypic data included records for birth (BW, n = 31,654), weaning 

(WW, n = 21,333) and yearling (YW, n = 14,439) weights. Pedigree was traced back to 1970, for animals 

with phenotype for any of the traits analysed. Two grouping strategies were studied. The first strategy 

involved 12 PPG based on birth year of their progeny and the sex of unknown parent. The second involved 

24 PPG based on the birth year of their progeny and the selection pathway. The statistical models included 

the fixed effects of contemporary group, sex, and management (WW and YW), linear and quadratic effect 

of age of dam (BW and WW) and percentage of breed purity, and the random effects of direct additive 

genetic, maternal genetic, and maternal permanent environment (WW). Criteria for comparison were 

product-moment and rank correlation between BLUP with and without PPG, genetic trend, root-mean-

square deviation, and changes in solutions for fixed effects. Product-moment and rank correlation ranged 

from 0.78 to 0.99, 0.41 to 0.91 and 0.45 to 0.85, for BW, WW and YW, respectively. Inclusion of PPG 

modified the genetic trend depending on the variable studied. Considering PPG in the model decreased the 

bias in the prediction of breeding values up to 11%, and changed solutions for fixed effects. Different 

grouping strategies could be applied depending on the evaluated trait.  

Keywords: Beef cattle, Breeding values, Genetic groups, Rank correlation, Unknown parents 

Introduction 

There are unknown parents in any population which might be related to the first generation of 

animals in the pedigree, or spread over several generations. Unknown parents affect genetic progress in 

several ways: they reduce selection intensity for animals with unknown parents, parentage uncertainty 

decreases the accuracy of evaluations, and parent miss-identification yields bias in heritability estimation 

and estimated breeding values (EBV) (Van Vleck 1970). Best linear unbiased prediction (BLUP) regresses 

genetic merit predictions of animals to unknown parents of mean zero. Depending on the genetic 

background and the generation to which unknown parents belong to, their expected genetic merit could be 

different from zero. One strategy to deal with missing parent information (Quass 1988) is assigning 
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unknown parents to phantom parent groups or genetic groups (PPG). These parents are assumed to be 

unrelated, non-inbred and to have a single descendant. Although PPG are not of interest themselves, they 

are considered to facilitate modelling and computation (Westell et al. 1988). Furthermore, along statistical 

correction for non-random missing pedigree information, PPG enables direct estimation of quantitative 

genetic parameters (Wolak and Reid 2017). Assigning unknown parents to PPG with a possibly non-zero 

average of genetic merit, would increase or reduce the genetic merits of their descendants. 

Since there are no specific rules to determine PPG, its definition is based on the researcher’s 

criteria, but it usually includes a time component (Fikse 2009). Other factors commonly considered into the 

grouping strategies are sex of the parent or selection intensity (Westell et al. 1988; Theron et al. 2002; Petrini 

et al. 2015). Defining PPG to balance the number of groups versus the number of unknown parents in each 

PPG is not likely to affect significantly an animal model's ability to estimate PPG effects with acceptable 

precision (Wolak and Reid 2017). However, any strategy for assigning unknown parents to PPG should 

reflect the average genetic level of unknown parents (Pollak and Quaas 1983). 

Inclusion of PPG in the model reduced the bias in the genetic trend of milk yield for South African 

Holsteins (Theron at al. 2002). Similarly, in Nelore cattle, Oliveira Junior et al. (2013) observed a reduction 

in EBV bias by including PPG in the genetic analyses for weaning and yearling weight, postweaning weight, 

scrotal circumference and muscling score. PPG caused a significant change in milk yield genetic trend of 

South African Holsteins (Theron et al. 2002). The purpose of this research was to compare two grouping 

strategies for unknown parents on genetic evaluation of growth traits in Mexican Braunvieh cattle. 

Materials and Methods 

Data 

Pedigree and phenotype databases were obtained from Asociación Mexicana de Criadores de 

Ganado Suizo de Registro. Phenotypic records included animals born between 1985 and 2017, from 229 

farms located all over Mexico. The evaluated traits were birth (BW), weaning (WW), and yearling weight 

(YW). Weaning and yearling weights were adjusted to 240 and 365 days of age, according to procedures 

proposed by Beef Improvement Federation (BIF 2010). Records exceeding ± 3 standard deviations were not 

included in the analyses. Similarly, WW and YW records outside 240 ± 45 and 365 ± 45 d, respectively, 
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were excluded from the analyses. Pedigree considered animals with phenotypic records born from 1970 and 

included 57,341, 2,746 and 27,015 individuals, sires and dams, respectively.  

Contemporary groups were formed considering herd, year, and season of birth (rainy or dry 

season). If a herd-year-season had less than four animals, it was excluded from the analyses. Table 1 shows 

the final number of records used for EBV and descriptive statistics for each trait. Connectedness between 

contemporary groups was tested using the AMC program (Roso and Schenkel 2006). 

Table 1 Descriptive statistics for growth traits in the Mexican Braunvieh population  

Trait n Min Mean ± SD Max 

Birth weight 31,654 23.00 38.11 ± 4.84 53.00 

Weaning weight 21,333 100.59 235.07 ± 42.85 372.62 

Yearling weight 14,439 146.66 324.07 ± 56.07 504.84 

SD = Standard deviation 

Genetic analyses 

The genetic analyses comprised estimation of genetic parameters, and BLUP (Henderson 1975) for 

the Mexican Braunvieh population, using the following single-trait models: 

 y = Xb + Z1u + e,   (1) 

for BW and YW, and 

y = Xb + Z1u + Z2m + Wmpe + e,  (2) 

for WW,  

where y, b, u, m, mpe, and e are vectors of phenotypic records, and fixed, direct additive genetic, maternal 

genetic, maternal permanent environmental, and residual effects, respectively. X, Z1, Z2, and W, are 

incidence matrices relating records to b, u, m, and mpe, respectively. Fixed effects were sex and the 

percentage of breed purity for BW, WW, and YW; linear and quadratic effects of age of dam at calving for 

BW and WW; birth contemporary group, birth to weaning contemporary group and management, and 

weaning to yearling contemporary group and management for BW, WW, and YW, respectively. There were 
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1,778, 1,450, and 1,038 contemporary groups for BW, WW, and YW, respectively. The (co)variance 

structures were defined as: 

𝑉𝑎𝑟 (
𝐮
𝐞

) =  (
𝐀σu

2  0

0 𝐈Nσe
2) (for BW and YW), and 

𝑉𝑎𝑟 (

𝐮
𝐦
𝐩𝐞
𝐞

) = (

𝐀σu
2

𝑆𝑦𝑚.

0
𝐀σm

2

0
0

𝐈Ndσmpe
2

0
0
0

𝐈Nσe
2

 

) (for WW), 

where A is the pedigree-based additive genetic relationship matrix among animals, INd and IN are identity 

matrices of order equal to the number of dams and number of observations, respectively; 𝜎𝑢
2, 𝜎𝑚

2 , 𝜎𝑚𝑝𝑒
2 , and 

𝜎𝑒
2 are the direct additive genetic, maternal genetic, maternal permanent environment, and residual 

variances, respectively. Variance components were obtained with derivative-free REML algorithm, using 

the MTDFREML software (Boldman et al. 1995), Table 2. The same variance component estimates were 

used in analyses with and without PPG. 

Table 2  Estimates of variance components for birth, weaning, and yearling weights 

Trait 𝝈𝒖
𝟐  𝝈𝒆

𝟐 𝝈𝒎
𝟐  𝝈𝒎𝒑𝒆

𝟐  

Birth weight 2.688 8.540   

Weaning weight 87.758 435.853 8.798 23.125 

Yearling weight 86.274 692.965   

𝜎𝑢
2 = direct additive genetic variance; 𝜎𝑒

2 = residual variance; 𝜎𝑚
2 = maternal genetic variance; 𝜎𝑚𝑝𝑒

2  = 

maternal permanent environment variance 

Genetic groups 

The evaluation of genetic grouping strategies was done through comparison of EBV predicted 

using a complete relationship matrix and those obtained from the inclusion of PPG. Criteria used to group 

missing parents were:  

1. Year of birth: Year of birth of the missing parent was considered to be five years before the year 

of birth of its progeny. Missing parent birth years were grouped into six classes: 1965-69, 1970-

74, 1975-79, 1980-84, 1985-89, and 1990-96. 
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2. Sex of missing parent.  

3. Pathway of selection (sire of son, sire of daughter, dam of son, and dam of daughter).  

Two strategies were studied:  

1. G12: Class of year of birth (6 levels)×sex of missing parent (2 levels). 

2. G24: Class year of birth (6 levels)×pathway of selection (4 levels).  

Table 3 shows the frequencies of missing parents in each PPG, for each strategy.  

Table 3 Criteria and frequency of unknown parents in phantom parent groups 

Strategy1 Unknown parent 

Year group2 

1965-69 1970-74 1975-79 1980-84 1985-89 1990-96 

G12 

Sire 540 513 820 941 678 433 

Dam  647 457 664 891 564 35 

        

G24 

Sire of son 119 58 72 90 87 143 

Sire of daughter 421 455 748 851 591 290 

Dam of son 145 57 51 84 73 9 

Dam of daughter 502 400 613 807 491 26 

1 Phantom parent group with 12 (G12) and 24 (G24) levels; 2 Progeny’s birth year – five years 

In order to apply PPG, the term Z1Qg was added to equations [1] and [2], where g is the vector of 

PPG, and Q is the incidence matrix-relating animals to PPG. The mixed model equations for BW and YW 

without PPG were: 

[
𝐗′𝐗 𝐗′𝐙
𝐙′𝐗 𝐙′𝐙 + λ𝐀−1] [𝐛̂

𝐮̂
] = [

𝐗′𝐲

𝐙′𝐲
],   (3) 

where 𝜆 is the ratio 𝜎𝑒
2/𝜎𝑢

2. The mixed model equations with PPG added were (Quaas 1988): 

[

𝐗′𝐗 𝐗′𝐙 𝐗′𝐙𝐐

𝐙′𝐗 𝐙′𝐙 + 𝐀−1λ 𝐙′𝐙𝐐

𝐐′𝐙′𝐗 𝐐′𝐙′𝐙 𝐐′𝐙′𝐙𝐐

] [
𝐛̂
𝐮̂
𝐠̂

] = [

𝐗′𝐲

𝐙′𝐲

𝐐′𝐙′𝐲

]   (4) 



 

 

84 

After incorporating PPG effects, the predicted genetic value of animals becomes EBV = û + Qĝ. 

This prediction could be made directly in the mixed model equations, using Quaas and Pollak (1981) 

transformation that involves absorption of PPG equations, which gives (Quaas 1988): 

[
𝐗′𝐗 𝐗′𝐙 𝟎
𝐙′𝐗 𝐙′𝐙 + 𝐀−1λ −𝐀−1𝐐λ

𝟎 −𝐐′𝐀−1λ 𝐐′𝐀−1𝐐λ

] [
𝐛̂

𝐮̂ + 𝐐𝐠̂

𝐠̂

] = [
𝐗′𝐲

𝐙′𝐲
𝟎

]    (5) 

The use of this procedure avoids the extra step of calculating û + Qĝ, after Equation [4], and the 

need for creating and exporting the matrix Q, which is computationally heavy.  

Equation 5 could not be solved with MTDFREML software. Therefore, we applied Equations [3] 

and [4] in this study, for BLUP without and with PPG. Predicted breeding values accounting for PPG (û + 

Qĝ) were obtained using R package “ggroups” (Nilforooshan 2018). This package calculates the matrix of 

PPG contributions to individuals in a pedigree (Q) and adds PPG contributions (Qĝ) to the genetic merit of 

animals, obtained from MTDFREML (û). 

Comparison and validation strategies  

The evaluation of grouping strategies were: 

1. Product-moment (Pearson) and rank (Spearman) correlations between BV obtained with and 

without PPG were estimated for each trait and PPG strategy. 

2. Genetic trends were obtained for each analysis, by averaging BV by birth year. 

3. In order to compare how well BV from each analysis fit the data, root mean square deviation 

(RMSD) between BV and phenotypes, and between BV and corrected phenotypes were calculated 

as: 

𝑅𝑀𝑆𝐷(𝐸𝐵𝑉,𝑦) =  √
∑ (𝐸𝐵𝑉𝑖−𝑦𝑖)2𝑛

𝑖=1

𝑛
, and 𝑅𝑀𝑆𝐷(𝐸𝐵𝑉,(𝒚−𝑿𝒃)) =  √

∑ (𝐸𝐵𝑉𝑖−(𝒚−𝑿𝒃)𝑖)2𝑛
𝑖=1

𝑛
,  

where 𝐸𝐵𝑉𝑖  is the predicted breeding value for individual i, 𝑦𝑖  is the phenotypic record for individual 

i; (𝒚 − 𝑿𝒃)𝑖 is the corrected phenotype for individual i, with Xb from BLUP without PPG; and, n is 

the number of phenotypic records. 

4. Changes in the solutions for fixed effect were estimated as deviation from solution without PPG 

for each trait 
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Results 

Analyses without PPG considered 3,925 and 3,258 unknown sires and dams, which were reduced 

to 12 (G12) and 24 (G24) phantom parent groups. G12 ranged from 35 to 941, and from nine to 851 unknown 

parents in G24 (Table 3). The product-moment (and rank correlation) coefficient estimates for EBV with 

and without PPG are shown in Table 4. Correlation coefficient estimates between EBV without PPG and 

EBV for G24 (rEBV,G24) were lower than those between EBV without PPG and EBV for G12 (rEBV,G12) for 

all traits and groups considered. The greatest effects of grouping were observed for WW in the group of 

females without phenotypic record, followed by males in the same condition. These estimates, product-

moment (and rank correlation), were from moderate to high, ranging from 0.799 to 0.988 (0.781 to 0.982), 

0.407 to 0.914 (0.491 to 0.886), and 0.445 to 0.853 (0.515 to 0.846), for BW, WW, and YW, respectively.  

Figure 1 illustrates the effect of whether including or not PPG on genetic trend estimation. In 

general, inclusion of PPG did not modify the slope. Inclusion of G24 yielded larger differences in genetic 

trends than inclusion of G12 respect to when PPG were not considered. The genetic trends by sex were 

similar with the inclusion of G12 or G24 (Figure 1). In the first years of the pedigree considered, it seems 

that there is not a clear trend, so variations in the average of EBV could be seen at the beginning of the 

period studied. However, this period coincides with the largest amount of missing genealogical information 

(Figure 2) and with the lack of phenotypic records.  

The results of empirical deviation, RMSD, are reported in Table 5. Grouping strategies studied 

yielded different responses depending on the trait analyzed. Nonetheless, the inclusion of PPG in genetic 

evaluation could reduce RMSD, either when it is estimated between EBV and phenotype, or EBV and 

corrected phenotype. Inclusion of PPG in BW analyses, under any scenario studied, decreased RMSD values 

compared with analyses without PPG. The most significant reduction (5.7%) were observed when G24 was 

considered. Inclusion of G12 decreased RMSD(EBV,y) and RMSD(EBV, y-Xb) estimates (5.8 and 7.5%, 

respectively) for WW compared with EBV predicted excluding PPG. Conversely for YW, G12 increased 

estimates of RMSD(EBV,y) and RMSD(EBV, y-Xb), but G24 reduced deviation, up to 11.7%.  

Solutions for fixed effects, as well as deviations, are presented in Table 6. Solutions for sex and 

age of dam (linear or quadratic), did not change by the inclusion of PPG in any trait analyzed, but solutions 
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for contemporary groups and percentage of breed purity experimented changes of different magnitude and 

meaning in the traits and scenarios studied. 

Table 4 Pearson (and Spearman) correlation coefficients between predicted breeding values without 

phantom parent groups (EBV), and EBV with 12 phantom parent groups (EBV_G12), and EBV with 24 

phantom parent groups (EBV_G24), in the Mexican Braunvieh population 

 Trait 

 Birth weight Weaning weight Yearling weight 

Males with phenotype  n = 15,810  n = 10,748 n = 7,384 

r(EBV, EBV_G12) 0.988 (0.982) 0.914 (0.886) 0.853 (0.846) 

r(EBV, EBV_G24) 0.975 (0.964) 0.786 (0.763) 0.743 (0.737) 

    

Males without phenotype n = 2,879 n = 7,941 n = 11,305 

r(EBV, EBV_G12) 0.941 (0.923) 0.796 (0.797) 0.719 (0.760) 

r(EBV, EBV_G24) 0.861 (0.830) 0.606 (0.627) 0.587 (0.636) 

    

Females with phenotype n = 15,844 n = 10,585 n = 7,055 

r(EBV, EBV_G12) 0.986 (0.979) 0.901 (0.879) 0.844 (0.840) 

r(EBV, EBV_G24) 0.972 (0.960) 0.752 (0.749) 0.710 (0.743) 

    

Females without phenotype n = 22,808 n = 28,067 n = 31597 

r(EBV, EBV_G12) 0.895 (0.877) 0.635 (0.659) 0.596 (0.634) 

r(EBV, EBV_G24) 0.799 (0.781) 0.407 (0.491) 0.445 (0.515) 
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Figure 1 Genetic trends of growth traits for BLUP (EBV (solid line)), BLUP with 12 phantom parent groups 

(EBV_G12 (dashed line)), and BLUP with 24 phantom parent groups (EBV_G24 (dotted line))  
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Figure 2 Number of animals (solid line), unknown sires (dashed line) and unknown dams (dotted line) per 

year of birth  

Discussion 

Formation of homogeneous size PPG is not an easy topic and sometimes could represent some 

problems. According to INTERBULL (2001), PPG should have a minimum size of 10 to 20 animals, and 

different groups should be merged to obtain a reasonable size. Thus, groups with few animals restrain the 

linkage between them, impairing the estimation of PPG effect (Petrini et al. 2015). In the present study, not 

all the groups had at least 10 animals (Table 3). However, merging of PPG was not necessary because the 

priority was given to the establishment of the time trend (Figure 2). 

Genetic analyses of livestock data have shown that considering PPG have a different effect on 

ranking of animals, and it has been proposed that correlation coefficients between EBV lower than 0.70 

could indicate changes in the ranking of animals for genetic evaluation (Crews and Franke 1998). Therefore, 

findings obtained in the present study suggest possible changes in the EBV ranking for WW and YW, 

depending on the sample of animals. Similar to the results in this study, Petrini et al. (2015) concluded that 
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changes were expected, due to the inclusion of PPG, in the rank of EBV for WW, supported by their Pearson 

and Spearman correlation coefficient estimates that ranged from 0.50 to 0.69; and from 0.61 to 0.70, 

respectively. On the contrary, in this study minimum or null changes in animal ranking for BW, non-

depending of grouping strategy applied were observed. These results for BW agree with those reported by 

Petrini et al. (2015) for scrotal circumference and muscling score, Shiotsuki et al. (2013) for yearling weight 

and post-weaning weight gain, and Theron et al. (2002) for milk production. These authors concluded that 

grouping did not change noticeably the results across models with or without inclusion of PPG. These results 

could indicate that different grouping strategies could be applied to different traits, but based on the evidence 

showed here and in the study by Petrini et al. (2015), grouping strategies with more PPG, or more complex, 

could result in lower correlations. 

Table 5 Root-mean-square deviation (RMSD) of estimated breeding values1 and raw phenotypes (y), and 

between estimated breeding values and corrected phenotypes (y - Xb), for growth traits, in the Mexican 

Braunvieh population 

RMSD Birth weight Weaning weight Yearling weight 

EBV, y 37.75 193.31 218.67 

EBV_G12, y 37.48 181.99 224.05 

EBV_G24, y 35.76 201.39 199.35 

EBV, y – Xb 30.91 193.01 270.55 

EBV_G12, y – Xb 30.63 178.64 278.55 

EBV_G24, y – Xb 28.88 202.98 239.00 

1EBV = predicted breeding values from BLUP, EBV_G12 = EBV with 12 phantom parent groups, 

EBV_G24 = EBV with 24 phantom parent groups 

The inclusion of PPG in the genetic evaluation could have variable and substantial effects on the 

estimated genetic trend. In our study, including PPG did not change the slope of the trend. In other study 

(Petrini et al 2015), the inclusion of PPG in genetic analyses for WW, scrotal circumference and muscling 

score showed a lower genetic trend compared to when PPG were not included. However, those authors did 

not observe differences between grouping strategies, indicating small differences in the averages of the 

EBV. In contrast, Shiotsuki et al. (2013) observed greater genetic trends, for post-weaning weight gain and 
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YW, when the model included PPG, with small differences between averages of EBV with and without 

PPG, especially at the beginning of the period studied. Likewise, Theron et al. (2002) showed that inclusion 

of PPG in genetic evaluation had a drastic effect in milk production traits, having a higher response (almost 

double) when PPG were included in the analysis. Additionally, Theron et al. (2002) concluded that inclusion 

of PPG in genetic evaluation reduced of bias in genetic trend. 

The effectiveness of including PPG on genetic evaluation depends primarily on the genetic 

structure of the population and trait studied (Petrini et al. 2015); also, it depends on criteria adopted to define 

PPG. Petrini et al. (2015) proposed that definition of PPG should be associated with the balance between 

complexity of criteria and the appropriate representation of genetic differences; on the other hand, formation 

of PPG should consider the selection criteria adopted by breeders, as the average generational interval, to 

define with greater precision the temporal component of the grouping strategy. Missing pedigree 

information from unknown parents could bias animal model because the resulting pedigree underestimates 

relatedness and inbreeding, and this bias is even more severe when parents’ identifications are missing 

concerning to the phenotypic values (Wolak and Reid 2017). In the present study, there was no overlap 

among phenotypes and animals with missing parents’ information. The evidence obtained in the present 

study indicates that inclusion of PPG could reduce RMSD values, for some trait×strategy studied, and 

therefore, models that included PPG could estimate with less bias or more accurately EBV. These results 

are supported by observations made by Theron et al. (2002) and Oliveira Junior et al. (2013). Those authors 

concluded that substitution of missing parents with PPG in traits such as WW, YW, scrotal circumference, 

milk production, among others, predicted with less bias EBV of animals with absent paternity. 

Nowadays, there are different tools to improve the knowledge of genealogical information, such as 

DNA methods, which could be expensive for breeders. Therefore, using PPG could be considered a viable 

alternative in the absence of complete pedigree data. It is clear that PPG should be included in the model as 

an approach to improve the accuracy of EBV of animals with some degree of unknown paternity. 

No scientific evidence was found of how inclusion of PPG in genetic evaluation affects the 

solutions for the fixed effects. Here, the addition of PPG caused changes in the solutions for contemporary 

groups and percentage of breed purity; the changes detected were function of the grouping strategy and trait 

analyzed. The covariate and the "sex" factor were not affected by the inclusion of PPG. 
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Table 6 Solutions for fixed effects (sex, contemporary group (mean ± standard deviation), age of dam and, 

degree of breed purity) obtained with and without phantom parents groups and differences between solutions 

in the Mexican Braunvieh population 

  Solution1   

Trait Effect EBV EBV_G12 EBV_G24 Δ2 Δ3 

Birth weight 

Sex_male 0.00 1.85 0.00 -1.85 0.00 

Sex_female -1.85 0.00 -1.85 -1.85 0.00 

CG4 0.99 ± 3.55 -1.01 ± 3.55 -0.02 ± 3.55 2.00 1.01 

Age of dam5 0.16 0.16 0.16 0.00 0.00 

Age of dam6 -0.03 -0.03 -0.03 0.00 0.00 

Breed purity 6.94 8.48 8.67 -1.54 -1.73 

       

Weaning weight 

Sex_male 14.68 14.68 14.64 0.00 0.04 

Sex_female 0.00 0.00 0.00 0.00 0.00 

CG -2.03 ± 37.50 -9.33 ± 37.46 2.58 ± 37.36 7.30 -4.61 

Age of dam 0.86 0.85 0.86 0.01 0.00 

Age of dam -0.19 -0.19 -0.19 0.00 0.00 

Breed purity 40.71 24.18 23.19 16.53 17.52 

       

Yearling weight 

Sex_male 0.00 0.00 0.00 0.00 0.00 

Sex_female -29.64 -27.13 -27.09 -2.51 -2.55 

CG 23.51 ± 49.37 43.52 ± 48.00 -9.65 ± 47.96 -20.01 33.16 

Breed purity 55.16 34.62 -3.54 20.54 58.7 

1EBV = solution for fixed effects without phantom parent groups, EBV_G12 = solution for fixed effect with 

12 phantom parent groups, EBV_G24 = solution for fixed effect with 24 phantom parent; 2 Difference 

between EBV and EBV_G12; 3 Difference between EBV and EBV_G24; 4 solution for contemporary 

groups; 5 solution for lineal age of dam; 6 solution for quadratic age of dam 

Replacing missing parents with PPG in the genetic evaluation for birth, weaning, and yearling 

weights for Mexican Braunvieh cattle changed the ranking of EBVs, modified the magnitude of genetic 
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trend, reduced the bias in the estimation of BV, and changed solutions for fixed effects, in function of the 

grouping strategy and the trait studied. It is recommended to apply different grouping strategies based on 

the trait analysed. Additional studies are still needed to evaluate other group classification criteria, including 

their effects on EBV reliability, even simulating absence of pedigree data. 
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