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DEVELOPMENT, ANALYSIS AND EVALUATION OF A DYNAMIC MODEL OF 
GROWTH, TRANSPIRATION AND NITROGEN UPTAKE FOR TOMATO IN 

GREENHOUSE 
DESARROLLO, ANÁLISIS Y EVALUACIÓN DE UN MODELO DINÁMICO DE 
CRECIMIENTO, TRANSPIRACIÓN Y ABSORCIÓN DE NITROGENO PARA 

JITOMATE EN INVERNADERO. 
Antonio-Martinez-Ruiz1, Irineo L. López-Cruz2 

RESUMEN  

El modelo HortSyst es un modelo en tiempo 
discreto para describir la dinámica del tiempo 
fototérmico (PTI), producción de materia seca 
(DMP), nitrógeno absorbido (Nup), índice de área 
foliar (LAI) y la transpiración del cultivo (ETc) para 
cultivos en invernadero. El modelo asume que no 
existen limitaciones de agua y nutrimentos. Las 
variables de entrada son la temperatura del aire, 
humedad relativa, y la radiación global solar diaria. 
Este modelo cuenta con trece parámetros. Para 
evaluar la predicción del modelo, se llevaron a 
cabo dos experimentos en invernadero, durante 
otoño-invierno y primavera-verano en Chapingo 
México. Se trabajó con dos cultivos de jitomate 
(Solanum lycopersicom L.) variedad “CID F1” en 
sistemas hidropónicos. Las plantas se 
distribuyeron con densidad de 3.5 plantas m-2. El 
objetivo de esta investigación fue desarrollar un 
modelo de cultivo y adaptarlo a invernaderos 
mexicanos y comparar el rendimiento de este 
modelo HortSyst con el modelo Vegsyst, también 
se llevó a cabo un análisis de sensibilidad global 
usando el método de Sobol para determinar 
cuáles parámetros fueron más importantes y 
después se realizó una calibración para encontrar 
los valores correctos de los parámetros, se usó el 
método de mínimos cuadrados no lineales y un 
método heurístico (evolución diferencial), también 
se llevó a cabo un análisis de incertidumbre para 
cuantificar la incertidumbre de las predicciones del 
modelo para ello se aplicó un método frecuentista 
y el método GLUE. Finalmente, se presentó una 
propuesta para el uso del modelo HortSyst para el 
manejo del riego y nitrógeno para jitomate en 
cultivo sin suelo. Se usaron diferentes estadísticas 
para juzgar la efectividad del modelo por ejemplo; 
la raíz del cuadrado medio del error (RMSE), 
sesgo, la eficiencia de modelación (EF), 
coeficiente de variación (CV), kurtosis, skewness, 
etc. el análisis y evaluación del modelo fue exitoso 
y las estadísticas resultaron aceptablemente. En 
conclusión el modelo podría ser una buena 
herramienta para el manejo de los sistemas de 
producción en invernadero.  

Palabras claves: Modelos de simulación, 

absorción de agua, expansión de área foliar, curva 
de dilución. 
 
1. Autor de la tesis 
2. Director de la tesis 

 

ABSTRACT 

The HortSyst model is a new discrete time model 
for describing the dynamics of photo-thermal time 
(PTI), dry matter production (DMP), N uptake 
(Nup), leaf area index (LAI), and the crop 
transpiration (ETc) of greenhouse crops. The 
model assumes that crops have no water and 
nutrient limitations. The input variables are air 
temperature, relative humidity, and daily solar 
global radiation. HortSyst has a total of thirteen 
parameters. In order to test model predictions, two 
experiments were carried out under greenhouse 
conditions, during the autumn-winter and spring-
summer season, in Chapingo, Mexico. Two tomato 
(Solanum lycopersicom L.) cultivar "CID F1" crops 
were grown in hydroponic systems. Plants were 
distributed with a density of 3.5 plants m-2. The aim 
of this research was to develop a new crop model 
and adapt it to Mexican greenhouses, and 
compare the performance of the HortSyst with the 
VegSyst one. In addition a global sensitivity 
analysis was carried out with Sobol method to 
determine which parameters were more important 
and then a calibration was run to find the correct 
values of these parameters using the nonlinear 
least square method and a heuristic method 
(differential evolution). Also, an uncertainty 
analysis was conducted to quantify the uncertainty 
of the model prediction; for this a, Frequentist 
method and the Bayesian method called 
Generalized Likelihood Uncertainty Estimation 
methods were applied. Finally, a proposal was 
presented for using the HortSyst model was given 
for the irrigation and nitrogen management of 
tomatoes in soilless culture. Different Statistics 
were used to assess the effectiveness of the 
model, such as Root Mean Square Error (RMSE), 
bias, modeling efficiency (EF), the coefficient of 
variance (CV), Kurtosis, Skewness, etc. The 
analysis and evaluation of the model were 
successful and all the statistics proved acceptable. 
In conclusion, this model could be a good tool for 
the management of greenhouse production 
systems.  
 
Keywords: simulation models, water uptake, leaf 

area expansion, dilution curve 
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1. GENERAL INTRODUCTION  
 
In a crop, growth is characterized by the processes of capture and use of solar 

radiation, carbon dioxide, water and nutrients to accumulate dry matter or 

biomass. Therefore, growth models have a module that calculates the 

production of structural biomass according to the captured carbon dioxide, the 

use of solar radiation, and / or the transpired water. The phenological 

development of the crop is mainly represented by the air temperature (Bechini et 

al., 2006), usually represented as degrees days or thermal time (° C d), a 

process that is linked to the development of the leaf area, responsible for 

capturing solar radiation, CO2 and transpiration.The growth of the crop is then 

driven by the net accumulation of carbon, assimilated by the leaves and 

transformed into biomass. Biomass is distributed differentially between plant 

organs (leaves, roots, stems and fruits), taking into account the losses by 

respiration, coupled with the phenological development and the availability of 

water and nutrients captured from the ground by the roots. While the leaves 

assimilate carbon, they also lose water by transpiration. Crop models can be 

explanatory or descriptive. Explanatory models simulate a feature (crop growth) 

in terms of processes that occur at hierarchical scales (leaf photosynthesis).  

Descriptive models show the existence of relationships between elements of a 

system (interception of light and dry matter production or use of water and dry 

matter production) but do not provide a more detailed explanation (Van Ittersum 

et al., 2003). Therefore, crop growth modeling can be done by following three 

approaches depending on the hierarchy of processes and the scales involved: 

a) The path of carbon assimilation, b) The solar radiation approach (efficiency of 

use of radiation, RUE), c) The transpiration approach (water use efficiency, 

WUE). 

The crop models are complex dynamic models that simulate the growth and 

development, considering biophysical and primary biochemical processes in the 

soil-crop-atmosphere system, such as photosynthesis, respiration, transpiration, 

dry matter distribution, and senescence (Wang et al., 2013). These models are 
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valuable tools for crop management such as irrigation and nutrition. They allow 

understanding and predicting complex crop responses to the effects of 

agricultural practices, environmental conditions and crop characteristics to 

improve production. Therefore, they play an important role in crop monitoring, 

yield prediction, field management recommendations, evaluation of potential 

production, and assessment of the impact of climate change. In addition to 

increasing interest in optimal control for greenhouse environments (Van Straten 

et al., 2010). A cropping system model is a technology for systematized 

analysis, numerical simulation, and quantitative expression of the dynamic 

processes of growth and development of the main crops and the influence of 

environmental factors in these processes with information technology (Arnott 

and Pervan, 2005; Wenjia and Hao, 2012), which allows the analysis of 

processes considering the influence of multiple factors (Shi et al. al., 2015). Van 

Straten (2008) defines a model as a simplified representation of reality that 

encapsulates the significant aspects of the real system for the intend purpose it 

is seen as a mathematical equations, to restrict the space of possible outcomes. 

Because of the increasing areas under irrigation and the high water 

requirements of crops (which consume around 70% of water available to human 

beings). The scarcity of water resources is leading to increasing controversy 

about the use of water resources by agriculture and industry, for direct human 

consumption, and for other purposes. Such debate could be alleviated by 

improving crop water use efficiency, so that increasing water use efficiency of 

crops is becoming a main goal for agriculture and food security goals. From the 

point of view of agricultural productivity, mineral nutrition is the second factor 

that limits crop growth after water availability, therefore, high amounts of fertilizer 

are required to produce large amounts of biomass (Le Bot et al., 1998). There 

are several approaches that differ in the degree of detail to model nitrogen in the 

soil and its limitation to crop growth, we distinguish between basically static 

approaches and the understanding of the dynamic approach of nitrogen. The 

effect of nitrogen status on phenology and on phenological processes is 

expressed as the difference between optimal nitrogen and actual concentration 
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in tissues (Van Ittersum et al., 2003). The prerequisites for crop management 

models are the ability to predict soil water and nutrient transport, root uptake, 

nitrogen transformations, dry matter production and distribution, and to describe 

physiological phenomena such as fruiting and ripening (Bar-Yosef and Klaering, 

2012). There is an intimate relationship between the state of nitrogen (N) and 

phosphorus (p) and carbon metabolism. The plants optimize the carbon gained, 

in relation to the nitrogen available for photosynthesis, this implies the close 

relationship between the nitrogen concentration in the leaves and the maximum 

photosynthetic activity measured at saturated light intensities, under optimum 

temperature, and humidity at environmental CO2 levels. All these considerations 

are necessary to represent and express these interactions through mathematical 

equations through modeling that could be a good tool for the management with 

high efficiency to avoid the wast of water and provide the irrigation according to 

the demand of the plant, especially in for soilless culture where water retention 

of a substrate is too low and the irrigation programming play an important role in 

the production systems. The efficiency term is also applied for nutrient 

management with the goal of reduce the impact in the aquifer pollution and 

reduce the production cost in greenhouses. So its important propose solution to 

this problem and help to growers to take decision to improve the efficiency in 

this system. 

A mathematical model consists of state variables, output and input variables 

(measurements, parameters, and initial conditions). These models can have up 

to 200 parameters or more, which must be estimated with experimental data, so 

the acquisition of the values of certain parameters is difficult as they can vary 

according to environmental conditions, cultivar, seasonal variations and other 

factors (Confalonieri et al., 2010; Ceglar et al., 2011; Wang et al., 2013). As the 

number of parameters increases, uncertainty in model prediction due to 

uncertainty in input variables becomes more important. In such situations it is 

necessary to determine the domain of such parameters (Cooman and 

Schrevens, 2006). Sensitivity analysis is the first step in clarifying the 

importance of these (Cooman and Schrevens, 2007). Therefore, the sensitivity 
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analysis evaluates the relative importance of input variables as well as their 

evolution over time of output and state variables (Saltelli et al., 2008). The 

estimation of these parameters is another important requirement because the 

behavior of the model depends to a large extent on the accuracy with which they 

were estimated. The predictions obtained by the models are not reliable and 

unrealistic when using parameter values that are not correct (Makowski et al., 

2006; Wang et al., 2013) and are intended to apply to different conditions. Once 

a model is available and its parameters were estimated, it must put to test by 

checking its performance on a set of independent data, not used before. This 

process is known as model validation. Another important element in the 

modeling process is uncertainty. Uncertainty is one of the most inherent and 

prevalent properties of knowledge arising from lack of information, imprecision 

and approximations of models made for reasons of simplicity. It would not be 

exaggerated to say that real world decisions that do not involve uncertainty do 

not exist or belong to a truly limited class (Druzdzel and Flynn, 2002). Due to all 

this, it is important to carry out an uncertainty analysis on a model when it will be 

integrated into a decision support system (DSS) for the management of a 

production system (Gupta et al., 2010) such as irrigation management (Giusti 

and Marsili, 2015) and crops nutrition (Anastasiou et al., 2005) and increase the 

effectiveness of management knowledge through the use of DSSs (Refsgaard et 

al., 2007). Some DSSs developed for models of crops in greenhouses are;  

HORTISIM (Cohen & Gijzen, 1998), TOMGRO (Sauviller et al., 2001), 

VEGSYST developed by (Gallardo et al., 2014; Granados et al., 2013) for the 

management and supplying of Nitrogen ad Irrigation scheduling for crops in 

greenhouse.  

The objectives of this research were to develop a dynamic growth model 

(HORTSYST) for cultivation under soilless culture in greenhouses, for the 

prediction of pho-thermal time, dry matter production, Nitrogen uptake, leaf area 

index, and transpiration of the crop to be integrated into a decision support 

system. In addition, a sub-model for the calculation of leaf area index is 

presented, based on a new concept called photo-thermal time, which couples 
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the effect of temperature, global solar radiation on crop growth and 

development, once the mathematical structure of the model was proposed it was 

carried out a global sensitivity analysis to determine the parameters that have 

the most influence on the uncertainty of the model, and subsequently a local and 

global calibration were run of the parameters selected from the results of the 

sensitivity analysis, because this model will be integrate into a decision support 

system, it was convenient to carry out an uncertainty analysis using a frequentist 

method and a Bayesian approach (GLUE) to determine the uncertainty of the 

output variables caused by the perturbation of the parameters, in order to 

quantify the predictive quality of the HortSyst model in different scenarios. 

Finally, a proposal was made for the use of the model in the irrigations 

scheduling and programming of the nitrogen dosage for a hydroponic tomato 

crop. All of the modeling process described above are summarized in Figure 1, 

which shows the complete schematic of the steps involving a complex modeling 

process. 
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Figure 1. Scheme of the modelling procedure (van Straten, 2011) 
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1.1 General objective 
 

 To develop, analyze and evaluate a dynamic model of growth, 

transpiration and nitrogen uptake for tomato crop (Solanum Lycopersicom 

L.) in greenhouse for soilless culture.  

1.2 Particular objectives 
 

1. To propose the mathematical structure of a new model (HORTSYT) for 

photo-thermal time (PTI), dry matter production (DMP), leaf area index 

(LAI), nitrogen uptake (Nup) and Transpiration (ETc) of a greenhouse 

crop. 

2. To evaluate and quantify the uncertainty and a global sensitivity analysis 

of the HORTSYST model. 

3. To carry out the calibration of the parameter’s HORTSYST model. 

4. To give a proposal of the application of the HORTSYST model for 

Irrigation scheduling and nitrogen supply. 
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1.3 Organization of the content of the thesis 
 

The research report is divided into 6 chapters, each with different content and 

conclusions. 

In chapter 2 is described the mathematical structure of the HortSyst model 

developed for tomato for Mexican greenhouses and compares the performance 

of this model versus VegSyst model developed for Spain greenhouses in order 

to have an overview of the effectiveness to predict variables that describes the 

yield of crop tomato. In chapter 3, the HortSyst model was calibrated with a 

local optimization method and the quality of predictions is showed with the 

correct parameter values for autumn-winter season. In chapter 4 an uncertainty 

analysis was carried of the model using two method one was a frequentist 

method (Monte Carlo) and another one was the Generalized Likelihood 

Uncertainty Estimation (GLUE) a Bayesian approach. Chapter 5 contains an 

uncertainty analysis with frequentist method, for the first version of modifying of 

VegSyst model before establishing the final mathematical structure of HortSyst 

model. Chapter 6 in this chapter are presented the global sensitivity analysis 

and is described the calibration of the model using a genetic algorithm to find the 

correct values of the more influent parameters of the HortSyst model. Chapter 7 

describes the proposal made to the model for using in the irrigation 

programming and schedule of Nitrogen supply. And finally the chapter 8 have 

the general conclusions of this thesis. 
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AND HORTSYST MODEL: TWO CROP MODELS TO 
PREDICT GROWTH, NITROGEN UPTAKE AND 
EVAPOTRANSPIRATION OF GREENHOUSE TOMATOES 
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Abstract 

HortSyst model is a new discrete time model for describing the dynamics of 

photo-thermal time (PTT), dry mater production (DMP), N uptake (Nup), leaf 

area index (LAI) and transpiration rate (ETc) of greenhouse crops. The first 

three variables are considered as state variables and the last two are 

conceptualized as output variables. This model was developed to be used as a 

tool for decision support systems in Mexican greenhouses. The model assumes 

that crops have no water and nutrient limitations. The model input variables are 

hourly measurements of air temperature, relative humidity, and the integration of 

the solar radiation. HortSyst has a total of thirteen parameters. In order to test 

model predictions two experiments were carried out under greenhouse 

conditions, during the autumn-winter, and spring-summer season, in Chapingo, 

Mexico. Tomato (Solanum lycopersicom L.) crop cultivar "CID F1" were grown in 

hydroponic systems. Plants were distributed with a density of 3.5 plants m-2. For 

the first experiment tomato were transplanted on 21 August 2015 and the 

second experiment were transplanted on 24 April 2016. A weather station was 

installed inside of the greenhouses, temperature and relative humidity were 

measured with an S-TMB-M006 model sensor, global radiation was measured 

with a S-LIB-M003 sensor. In each experiment, three plants were chosen 

randomly and harvested every ten days to measure DMP, LAI, and Nup 

mailto:ilopez@correo.chapingo.mx
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accumulation. The crop transpiration rate (ETc) was measured every minute by 

means of a weighing lysimeter, equipped with a tray carrying four plants for both 

experiments. The HortSyst proposed model described in this paper can be used 

as a decision-support tool in greenhouse production systems, since according to 

the fitting of its predictions against the measurements it can be helpful in water 

and N supply. 

Keywords: water consumption, extraction curve, decision-support system, 

potential growth model  

2.1 Introduction 

Plant growth modelling has become a key research activity, particularly in the 

fields of agriculture, forestry and environmental sciences. Due to the growth of 

computer power and resources and the sharing of experiences between 

biologists, mathematicians and computer scientists, the development of plant 

growth models has progressed enormously during the last two decades. The 

use of an interdisciplinary approach is necessary to advance research in plant 

growth modelling and simulation (Thornley and France, 2007; Fourcaud et al., 

2008). The efficient management of intensive agriculture demands consideration 

of the factors that determine the crop production potential and their interactions. 

The integration of these factors under the systems approach and based on 

growth simulation models is an approximation that allows the design of practices 

of management aimed at increasing productivity by minimizing the 

environmental impact caused by agricultural activity (Stockle et al., 1994).To 

increase knowledge of cropping systems and to look for practical applications, 

several models have been developed for greenhouse crops. Specifically for 

tomatoes have been proposed TOMGRO (Jones et al., 1991), TOMSIM 

(Heuvelink et al., 1999), TOMPOUSSE (Abreu et al., 2000) models, which have 

helped to simulate the behavior of production systems. However, some of these 

models are too complex because they involve too many state variables, input 

variables or model parameters, which make their implementation difficult. For 

example the model TOMGRO ver. 1.0 has 69 state variables, TOMGRO ver. 3.0 
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has 574 state variables, or the simplified version of this same model that 

presents 5 state variables and 29 parameters (Vazquez et al., 2014). Other 

models for greenhouse crops, although simpler, have been developed for crop 

systems specific to a region such as the VegSyst model (Gallardo et al., 2011; 

Gimenez et al., 2013; Gallardo et al., 2014; Gallardo et al., 2016). In order to 

have an optimal control in the management of productive systems, it is 

necessary to develop models with the capacity to represent the interactions that 

exist between the development of the crop, climatic conditions and physiological 

processes of water and nutrients uptake. Thus, to find the concentration of the 

optimal nutrient solution, is the most desirable in a production system, this fact 

considers an important effect of the transpiration and irrigation management on 

the nutritional absorption since the dissolved ions in the nutrient solution are 

transported from the root through mass flow, in which transpiration is the 

process that provides the necessary force for the movement to occur (Mengel et 

al., 2001). Therefore, with the use of a mathematical model, the perfect 

synchronization between the amounts of water required for growth and the 

nutritional demand of the crop depending from the environmental conditions, 

allows efficient use of water in the greenhouse crops.  

Nowadays, some of the scheduling of irrigation of hydroponic culture mode used 

in greenhouses is based either on time clock or by radiation method, but some 

of these are not flexible enough to satisfy the varying crop water requirements 

through the day and during de season, in case of time clock, and another as, the 

radiation method does not take into account the influence of vapor pressure 

deficit so this method is an approach of the reality, but not the complete solution 

according to (Lizarraga et al., 2003). 

The HortSyst model is a new discrete time dynamic model that predicts: photo-

thermal time, dry matter production, N uptake, leaf area index and crop 

transpiration rates. The development of this model started by modifying the 

structure of the VegSyst model (Gallardo et al., 2011; Gimenez et al., 2013; 

Gallardo et al., 2016) proposed for greenhouse crops. However, these 
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modifications became increasingly large and ended up being a new model 

considerably simpler and with predictive quality equal or greater than the 

VegSyst model. The objective of this work is to describe the mathematical model 

HortSyst that was developed as a tool capable of being used by producers in the 

decision making on the nitrogen supply from the simulation of biomass 

production and irrigation programming using the transpiration in a crop of 

hydroponic tomato (Solanum lycopersicom L.) in greenhouse 

2.2 Materials and methods  

2.2.1 HortSyst Model Description 

The HortSyst model is a nonlinear dynamic growth model for hydroponic 

systems, for tomato (Solanum lycopersicom L.) in greenhouses. This model was 

developed to be used as a tool for decision support systems in Mexican 

greenhouses. The model assumes that crops have no water and nutrient 

limitations, also that the crop is free of pests and diseases, and under 

management in cultural activities similar to commercial greenhouses. 

The HortSyst model predicts crop biomass production (𝐷𝑀𝑃, 𝑔 𝑚−2), N uptake 

(𝑁𝑢𝑝, 𝑔 𝑚−2), photo-thermal time (𝑃𝑇𝐼,𝑀𝐽 𝑑−1) as state variables and the crop 

transpiration rates (𝐸𝑇𝑐, 𝑘𝑔𝑚−2) and leaf area index (𝐿𝐴𝐼 ,𝑚2𝑚−2) as output 

variables. The model inputs variables are hourly measurements of air 

temperature (°C), relative humidity (%), and the integration of solar radiation 

(𝑊𝑚−2). It has thirteen parameters (Table 1) besides initial conditions of dry 

matter production and photo-thermal time. The HortSyst  model was developed 

based on the VegSyst model (Gallardo et al., 2011; Gallardo et al., 2016; 

Gallardo et al., 2014; Giménez et al., 2013; Granados et al., 2013; Gallardo et 

a., 2016). The following Forrester diagram (Figure 2.1) summarizes the 

functional relationship that exists between the components of the model as 

input, output, parameters and state variables. 
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Figure 2.1. Forrester diagram for HortSyst model  
 

The HortSyst model predicts in discrete time, namely, by means of difference 

equations the behavior of the three state variables; the photo-thermal time 

(eq.1), the dry matter production (eq.2) and the nitrogen uptake (eq.3). 

 PTIjPTIjPTI  )()1(                                                                                          (1)        

DMPjDMPjDMP  )()1(                                                                                     (2) 

upupup NjNjN  )()1(                                                                                          (3) 

where the values of each variable in discrete time 𝑗 + 1 are calculated by adding 

the values of the variables in the previous discrete time 𝑗 plus the rate of change 

∆ corresponding to each variable.The variable photo-thermal time (𝑃𝑇𝐼,𝑀𝐽 𝑑−1) 

is defined as the state variable since it couples the effect of radiation and 

temperature on the crop and from the point of view of the climate of the 

greenhouse, these variables are not strongly correlated as they are in the open 

field (Reffye et al., 2009; Dai et al., 2006; Xu et al., 2010). In contrast to other 

researchers who have modeled the leaf area index as a function of time or as a 
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function of the day degrees (Carmassi et al., 2013; Chin et al, 2011; Incrocci et 

al., 2008; Massa et al., 2011; Medrano., 2008; Montero ., 2001; Orgaz et al., 

2005) or others who have used the days after transplant (Carmassi et al., 2007; 

Medrano., 2005; Medrano et al., 2011; Ta et al., 2011) or  the specific leaf área 

(Bechini et al, 2006; Stockle et al, 2003), in the HortSyst model, the photo-

thermal time state variable as the independent variable of the leaf area of the 

crop. In the VegSyst model, the thermal time is the state variable that drives the 

daily calculation of biomass production, nitrogen uptake and crop 

evapotranspiration (Gallardo et al., 2011; Gimenez et al., 2013). In addition, 

radiation directly influences crop growth (dry matter production) and affects 

development (morphogenesis) (Sergio et al., 2003).  

The rate of change of the photo-thermal time (∆𝑃𝑇𝐼) depends on the 

photosynthetically active radiation(PAR), normalized thermal time (TT) and the 

intercepted fraction of radiation(𝑓𝑖−𝑃𝐴𝑅). 

                                                          
                                                  (4) 

where the index 𝑖 represents hourly calculations, index 𝑗 represents daily level, 

𝑃𝐴𝑅 is photosynthetically active radiation and is calculated from daily global 

radiation above the crop (𝑅𝑔,𝑊 𝑚−2). 

𝑃𝐴𝑅 =  0.5 × 𝑅𝑔                                                                                                  (5) 

 𝑇𝑇 °C is the normalized thermal time as used by other researchers (Bechini et 

al., 2006; Soltani et al., 2012;), which is defined as the ratio of the rate of growth 

under real conditions of optimal temperatures, and is calculated as follows: 

𝑇 =

{
 
 

 
 
0 (𝑇𝑎 < 𝑇𝑚𝑖𝑛)
(𝑇𝑎 − 𝑇𝑚𝑖𝑛)/(𝑇𝑜𝑏 − 𝑇𝑚𝑖𝑛) (𝑇𝑚𝑖𝑛 ≤ 𝑇𝑎 < 𝑇𝑜𝑏)
1 (𝑇𝑜𝑏 ≤ 𝑇𝑎 ≤ 𝑇𝑜𝑢)
(𝑇𝑚𝑎𝑥 − 𝑇𝑎)/(𝑇𝑚𝑎𝑥 − 𝑇𝑜𝑢) (𝑇𝑜𝑢 < 𝑇𝑎 ≤ 𝑇𝑚𝑎𝑥)
0 (𝑇𝑎 > 𝑇𝑚𝑎𝑥)

                                           (6) 
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where Ta (°C) is the temperature of the air, 
minT  (°C) is the minimum 

temperature, 
maxT (°C) is the maximum temperature, 𝑇𝑜𝑏 (°C) is the lower optimal 

temperature and 𝑇𝑜𝑢 (°C) is the upper optimal temperature.  

The intercepted fraction of the radiation is calculated by the exponential function: 

))(exp(1 jLAIkf PARi 
                                                                                      (7) 

where 𝑘 is the light extinction coefficient, and 𝐿𝐴𝐼 is the leaf area index which in 

turn is calculated from the leaf area value 𝐴𝑓 ( 2m ) which depends on the daily 

photo-thermal time (∆𝑇𝑃𝐼) by an equation type Michaellis-Menten. 

d
jPTIc
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jLAI 
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
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2

1

                                                                                            (8) 

where 𝑐1 (
-2m ) and 𝑐2 are parameters of the Michaellis-Menten equation and  𝑑 (

-2mplants ) is the density of the crop. 

The model uses a classical concept approach, efficient radiation applications 

(Kang et al., 2008; Lemaire et al., 2008; Reffye et al., 2009) which allows the 

calculation of daily dry matter production (∆𝐷𝑀𝑃) as a function of the 

photosynthetically active radiation (PAR) eq. (5), crop characteristics such as 

leaf area index (LAI) eq. (8) and the radiation use efficiency parameter (RUE, 

-1gMJ ) as has proposed by several researchers (Gallardo et al., 2016; Shibu et 

al., 2010; Soltani and  Sinclair, 2012). 

)()( jPARfRUEjDMP PARi                                                                         (9) 

The value of (∆𝐷𝑀𝑃) accumulates day by day as in equation (2) 

Once the daily dry matter production is calculated, it is possible to calculate the 

nitrogen uptake daily by the equation(10, 11) (Le Bot et al., 1998; Tei et al., 

2002) which, when accumulated with equation (3), allows the calculation of the 

nitrogen extraction throughout the crop growing period (ΔDMP).  
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  b
jDMPajN


 )()(%                                                                                          (10) 

  )(100/)(%)( jDMPjNjNup                                                                                  (11) 

where  
upN  is the daily uptake nitrogen ( 2mg ), a  and b  are parameters of 

the equation and DMP  is the increase of daily dry matter produced ( 2mg ). 

Finally, crop transpiration ),( 2mkgETc  is calculated every hour using the 

equation proposed by Baille et al. (1994), which has been widely used to 

schedule greenhouse irrigation (Carmassi et al., 2013; Martínez-Ruiz et al., 

2012; Massa et al., 2011; Medrano et al., 2011). The Baille transpiration model 

requires the global radiation data, vapor pressure deficit, which is calculated with 

values of air temperature and relative humidity and leaf area index equation (8). 

The equations that in HortSyst estimate the transpiration of the crop are: 

    ),()()()())(exp(1 ndBiVPDjLAIiRgjLAIkAiETc                           (12) 

   

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1
i

iETcjETc              (13) 

where )1( jETc  ( 12  dmkg ) is the daily accumulated transpiration,  )(iETc (

12  hmg ) is the hourly transpiration rate, gR  is the hourly  incident solar radiation 

( 2mW ), VPD is the vapor pressure deficit and A  (dimensionless) refers to the 

radiative parameter; and dB , nB  (
12 kPaWm ) are parameters of the aerodynamic 

term of equation (13) for day and night, respectively. 

2.2.2  The computational model 

The HortSyst is currently programmed in the Matlab computer environment. The 

dynamic equations are coded inside a Matlab subroutine (function). Two 

iterative loops allow computing daily and hourly calculations. The outputs of the 

subroutine are the variables; photo-thermal time, crop biomass, nitrogen uptake, 

crop evapotranspiration and leaf area index. The input variables of the 

subroutine are the model parameters (Table 1) and climatic variables. A main 
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program (Matlab script) calls the subroutine and generating graphs or other 

calculations necessary to run the simulations. 

2.2.3 Tomato growth experiments description 

Two experiments were carried out under greenhouse conditions, during the 

autumn-winter, and spring-summer season, located at the University of 

Chapingo, Mexico. Geographical location: 19° 29’ NL, 98° 53’ and 2240 msnm. 

A tomato (Solanum lycopersicom L.) crop cultivar "CID F1" was grown in a 

hydroponic system using volcanic sand as substrate and fertilized with Steiner 

nutrient solution (Steiner, 1980). Plants were distributed with a density of 3.5 

plants m-2. For the first experiment tomato seeds were sown on 18 July 2015 

and the plants were transplanted on 21 August 2015 in a glass greenhouse type 

chapel with 8 x 8 m dimension, and the second experiment were sown on 24 

March 2016 and transplanted on 24 April 2016 in a plastic greenhouse with 

overhead ventilation with dimension of 8 x 15 m. A weather station (Onset 

Computer Corporation) was installed inside of the greenhouses. Temperature 

and relative humidity were measured with a S-TMB-M006 model sensor placed 

at a height of 1.5 m. Global radiation was measured with a S-LIB-M003 sensor 

and was located 3.5 m above the ground. Both sensors were connected to a 

datalogger U-30-NRC model, which recorded data every minute.  

In each experiment, three plants were chosen randomly for the sample each 10 

days to measure dry matter, nitrogen uptake accumulation and leaf area index. 

Plants were dried out during 72 h at 70 °C. And nitrogen was determined by 

Micro-Kjeldahl method (Chapman and Pratt, 1974). Leaf area Index were 

determinate by a nondestructive method, it consisted in taking 4 plants randomly 

in order to get measurements of width and length of the plants leaves and also 

the total leaf area and a plant canopy analyzer LAI-3100 (LICOR, USA) was 

used. From the measurements, nonlinear regressions models were fitted in 

order to estimate this variable. The crop transpiration rate was measured every 

minute by means of a weighing lysimeter located in a central row of the 

greenhouses, the device include an electronic balance (scale capacity =120 kg, 
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resolution ±5 g equipped with a tray carrying 4 plants for both experiments. The 

weight loss measured by the electronic balance was assumed equal to the crop 

transpiration. 

In order to compare the predictive quality of the HortSyst and VegSyst models 

we used the nominal parameters listed in Table 2.1 for the HortSyst model and 

the parameters used for the simulation VegSyst model were taken from Gallardo 

et al.(2014); Gallardo et al.(2016). And MAE and RMSE statistics were 

considered to evaluate the performance of simulation of both models. 

Table 2.1. Model parameters used for HortSyst model during greenhouse 
growing condition. 

No Parameter Symbol Units Nominal 
Value 

(autumn-
winter) 

Nominal 
Value 

(spring-
summer) 

source 

1 Top upper temperature Tmax °C 35.00 35.00 Peet and 
Welles (2005), 
Chu et al., 
(2009) 

2 Top bottom temperature Tmin °C 10.00 10.00 Peet and 
Welles (2005), 
Chu et al., 
(2009) 

3 Optimum minimum 
temperature 

Tob °C 17.00 17.00 Peet and 
Welles (2005) 

4 Optimum maximum 
temperature 

Tou °C 24.00 24.00 Peet and 
Welles (2005) 

5 Radiation Use Efficiency RUE g MJ-1 4.01 3.1 Gallardo et al., 
(2014), Challa 
and Bakker 
(1998) 

6 Extinction coefficient k --- 0.70 0.70  

7 N concentration in the 
dry biomass at the end 
of the exponential 
growth period 

 
a 

g m-2 7.55 7.55 Gallardo et al., 
(2014) 

8 Is the slope of the 
relationship 

b --- -0.15 -0.15 Gallardo et al., 
(2014) 

9 Slope of the curve c1 m-2 2.82 3.07 Estimated 

10 Intersection coefficient c2 --- 74.66 175.64 Estimated 

11 Radiative coefficient A --- 0.59 0.24 Montero et al., 
(2001), 
(Medrano et 
al., (2008) 

12 Aerodynamic coefficient 
during day 

Bd W m-2 kPa-

1 
19.10 37.6 Montero et al., 

(2001),Medran
o et al., (2008) 
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13 Aerodynamic coefficient 
during night 

Bn W m-2 kPa-

1 
25.00 26 Montero et 

al.,(2001), 
Medrano et 
al.,(2008) 

2.3 Results 

2.3.1 Simulation of HortSyst Model 

2.3.1.1 Input variable 

The global solar radiation (Rg), air temperature (Ta), and relative humidity (RH) 

used in the simulations of the HortSyst and VegSyst model for both growing 

periods autumn- Winter (O-W) and spring summer (S-S) crop cycle are showed 

in Figure 2.2, 2.3 and 2.4, respectively. The nominal values of the model 

parameters are given in Table 2.1.  

According to measured data it is clear that the amount of global radiation in the 

spring summer season is a more than twice the one is reached in the autumn-

winter season. Furthermore,  during autumn-winter we observed greater cloudy 

days. This fact has its effect on the accumulation of dry matter, nitrogen uptake, 

leaf area index and water uptake (transpiration). 

 

Figure 2.2. Global radiation measured hourly inside of the greenhouse located in 
Chapingo, Mexico during autumn-winter (O-W), 2015, and Spring-
Summer (S-S), 2016. 
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Figure 2.3. Air temperature measured hourly inside of the greenhouse, located 
in Chapingo, Mexico, during autumn-winter (O-W), 2015 and Spring-
Summer (S-S), 2016 

 

Figure 2.4. Relative Humidity measured hourly inside of the greenhouse located 
in Chapingo, Mexico, during autumn-winter (O-W), 2015 and Spring-
Summer (S-S), 2016 

2.3.1.2 Dry matter Production (DMP) 

Figure 2.5 shows the values of the simulation for dry matter production using 

RUE values of 4.01 g MJ-1 for the autumn-winter and RUE of 3.01 g MJ-1 for the 

spring summer, where it is observed that during the spring summer season for 

both HortSyst and VegSyst models, there was approximately twice the biomass 

with respect to the autumn-winter, this is due to the fact that it is the cycle in 

which there is more solar radiation (Figure 2.2).  
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It was found that the simulation follows the trend of the measured values in 

laboratory having as accumulated final value of simulated biomass in the 

autumn-winter cycle of 587.37 g m-2 against a measured value of 673.38 g m-2 

which represents an underestimation of the model of 12.77% of the measured 

value. In case of the spring-summer period, the simulated value at the end of the 

cycle is 1336.59 g m-2 against the measured 1304.118 g m-2, resulting in an 

overestimation error of 2.49%. This means that the RUE value considered could 

be used for the simulation of the biomass. 

In both experiments total dry matter production shows an exponential growth 

and then an approximately linear growth phase, which is a growth pattern, 

expected under constant climate conditions.                                         

 
Figure 2.5. Time course of the simulated and measured values of dry matter 

production of a greenhouse tomato crop grown in Chapingo, Mexico, 
for a) autumn-winter, 2015 and b) spring-summer, 2016 for HortSyst 
and VegSyst models 

2.3.1.3 Nitrogen Uptake (Nup) 

On the other hand, Figure 2.6 shows a comparison between the values 

measured and predicted by the HortSyst model and VegSyst model, for the 

nitrogen uptake variable for both crop seasons. In both cases a good fit between 

simulations and measurements is observed for the case of nitrogen uptake in 

autumn-winter, the final value predicted by the simulation is 19.98 g m-2 against 

the measured value of 13.71 g m-2 which represents an error of 45.78%. In case 

of Spring-Summer the value simulated was 40.23 g m-2 and the measured was 
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27.4 g m-2. In both periods error of predicted value by the model is 

approximately of 46% above measurements (Figure 6).  

                                                                       

Figure 2.6. Time course of the simulated and measured values of Nitrogen 
uptake of a greenhouse tomato crop grown in Chapingo, Mexico, for 
a) autumn-winter, 2015 and b) Spring-Summer, 2016, for HortSyst 
and VegSyst models 

2.3.1.4 Leaf Area Index (LAI) 

Because the lack of information in the literature of the parameters values of this 

variable (c1 and c2) a manual calibration was carried out in order to determine 

the possible values could be used in the simulation for each growing period. It is 

possible that, this variable plays central role in the model since, from these 

simulated values is predicted photo-thermal time, dry matter production, 

transpiration and indirectly nitrogen uptake. The considered values for the 

parameters are showed in Table 2.1. Their values are longer for spring-summer 

than for autumn-winter. 

The simulated LAI values are similar to the measured values 5.85 m2m-2 with an 

error of 0.4% between the measured and simulated data (5.83 m2m-2), during 

autumn-winter and during spring-summer, the measured LAI was 7 m2m-2, 

against 6.86 m2m-2 with an error of 2.17% for the measured and simulated data 

as shown in the figure 2.7. LAI is only simulated by the HortSyst model. The 

VegSyst model does not take in account the computation of LAI, because it uses 
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another concept like heat units and intercepted PAR radiation for two stages of 

the crop. 

         

Figure 2.7 Time course of the simulated and measured values of the Leaf Area       
Index of a greenhouse tomato crop grown in Chapingo, Mexico for, 
a) Autumn-Winter, 2015 and b) Spring-Summer, 2016, for HortSyst 
model 

2.3.1.5 Crop transpiration rate (ETc) 

For the transpiration variable (Figure 2.8), it was found that using the 

parameters values shown in Table 1 for A, Bd and Bn, it is acceptable to 

estimate with an error of 2.62%, for an accumulated simulated value of 183.68 

kg m-2 and measured values and 188.49 kg m-2 at the end of the cycle autumn-

winter and measured value of 291.69 kg m-2 against simulated of 294.2 kg m-2 

with error of 0.88% for spring and summer, respectively. 

         

Figure 2.8.Time course of the simulated and measured values of crop 
transpiration of a greenhouse tomato crop grown in Chapingo, 
Mexico a) Autumn-Winter, 2015 and b) Spring-Summer, 2016, for 
HortSyst and VegSyst models                    
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2.3.1.6 Photo-thermal time (PTI) 

Figure 2.9 shows the photo-thermal time variable that uses this model to 

calculate the leaf area index which presents a behavior similar to that previously 

reported by Xu et al., (2010). It is important to emphasize that this simulation is 

intended to demonstrate the ability of the model to predict the most important 

variables related to the production of a hydroponic tomato crop under 

greenhouse conditions and using volcanic sand (“tezontle”) as substrate. Using 

the temperature at 1.5 m above ground and PAR above canopy this photo-

thermal model eq. (4) gave satisfactory prediction of leaf area index eq.(8)  

The amount of photo-thermal time accumulated in autumn winter was 

108.97𝑀𝐽 𝑑−1 and for spring summer of 327.56 𝑀𝐽 𝑑−1 representing a 3 times 

greater difference in spring- summer. Like LAI variable the HortSyst model 

simulates PTI during the crop cycle this is the main difference between HortSyst 

and VegSyst model. 

 

Figure 2.9.Time course of the predicted of photo-thermal time by HortSyst 
model, accumulated since plant date for Autumn-Winter (O-W) and 
Spring-Summer (S-S) 

From the simulations carried out for the HortSyst and VegSyst model, the 

HortSyst model provides better predictive quality for dry matter production, 

nitrogen uptake and transpiration than the VegSyst model, this is confirmed by 

the higher values of the statistics; MAE and RMSE (Table 2) for this last model 
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for both crop season, spring-summer and autumn-winter, with the highest errors 

for the case of transpiration in the VegSyst model. The variable leaf area index 

was not compared since both models do not share the simulation of this variable 

in its mathematical structure. 

Table 2.2. Summary of results of the statistical indices (MAE and RMSE) used 
to evaluate the performance of the HortSyst model and VegSyst 
model for simulation of DMP, Nup, ETc and LAI during Autumn-
Winter, 2015 and Spring-Summer, 2016 

  HortSyst Model VegSyst Model 

  Autumn-Winter 

OUTPUT       MAE     RMSE      MAE      RMSE 

DMP 39.35 53.60 69.70 93.04 

Nup 2.56 3.19 7.29 8.82 

ETc 3.51 4.37 67.77 80.49 

LAI 0.09 0.10     

  Spring-Summer 

DMP 12.93 16.71 70.14 101.17 

Nup 5.25 7.03 13.54 16.99 

ETc 15.94 18.16 59.96 79.53 

LAI 0.12 0.14     

 
In order to show a potential use of the HortSyst model to predict the 

concentration of nitrogen uptake by the crop as a function of the transpiration, in 

figure 2.10 shows daily N absorbed concentration, considering the amount of 

water absorbed daily by the process of transpiration predicted by the model, for 

the spring-summer and autumn-winter crop cycles. 

Where in the first 35 days, the uptake concentration by crop exceeds the 

concentration of 12 me L-1 (168 mgL-1) recommended by Steiner (1980), after 40 

days of cultivation, the concentration decreases approximately half of the 

concentration applied to the crop. With the evaluation of performance of the 

model, it was found that it would be a waste of approximately 50% of the applied 

fertilizer considering an efficiency of 100% of the system production under 

soilless culture. 
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Figure 2.10.Time course of simulation of daily value of N concentration (meL-1) 
nitrogen uptake during Autumn-Winter (O-W), 2015 and Spring-
Summer (S-S), 2016 

2.4 Discussion 

The crop simulation models HortSyst and VegSyst were simulated to show its 

performance for tomato for Mexican greenhouses. HortSyst model predicts 

correctly crop biomass, photo-thermal time and predicts accurately leaf area 

index and transpiration crop, however the quality of prediction of N uptake is 

poor using the nominal parameter values.  This means that to improve the 

predictive quality of the model not only for N uptake but also for the other 

variables parameter estimation of model calibration is required by using 

experimental data.  

The quality of the simulated values of dry matter production are acceptable, 

because of the results obtained in the simulation using the RUE value of 4.01 g 

MJ-1 for prediction of biomass reported by (Gallardo et al., 2016) and RUE 3.01 

g MJ-1  reported by (Challa and Bakker,1998), for tomato crop, biomass values 

at the end of cycle are slightly lower than those reported by Gallardo et al., 

(2014) for autumn-winter. The value of this parameters are different due to 

differences in climatic conditions between one region and another or to different 

crop cycles (Cota et al.,2014.). 
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The measured N  uptake values were quite similar to those results reported for 

tomato crop by Gallardo et al., (2016); Gallardo et al. (2014). The differences in 

the values accumulated for nitrogen uptake between both cycles at the end of 

these are because in each cycle the environmental conditions are not the same 

at least in the levels of radiation and maybe the temperature variation between 

the day and night. The parameters used in the model for these variables were 

the same for the two crop cycles reported by Gallardo et al. (2016); Gallardo et 

al. (2014) since no values were found for each different cultivation period, in 

both cases the model did not show a satisfactory fit because the authors 

calibrated the model for nitrogen in a different culture system. The modeling of 

LAI is one of the important differences with respect to the VegSyst model 

proposed by (Gallardo et al., 2011, 2016, 2014; Giménez et al., 2013; Granados 

et al., 2013), since these authors did not include the simulation of this variable in 

their model.  

The final accumulated measured of evapotranspiration value for the autumn- 

winter is similar to those reported by (Gallardo et al., 2016; Gallardo et al., 

2014). It is important to mention that the methodology to model water 

consumption by these authors was different since they used the Penman-

Monteith model with crop coefficients. The values of the parameters in the 

HortSyst model are slightly similar to those reported by (Martínez-Ruiz et al., 

2012;) since these authors performed the calibration using frequent climatic data 

of 15 minutes and hourly. 

In case of photo-thermal time Xu et al.(2010) found that modeling the leaf area 

index using this concept gave better predictions than degrees days model as 

(Gallardo et al., 2016) the latter type of models overestimate the predictions 

because of the fact that inside of the greenhouse the global radiation is not 

synchronized with the temperature behavior (Reffye et al., 2003; Xu et al., 

2010). On the other hand, when comparing the estimation of leaf area index 

using the specific leaf area as used in  Stockle et al. (1994) presents a poorest 

predictions due to the large variation of the specific leaf area among different 
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growing seasons and the data of this latter variable can only be obtained by 

destructive measurements, this limits the application of models based on 

specific leaf area to greenhouse crops and climate management practice (Xu et 

al., 2010). 

The advantage of using a model to make fertilization recommendations is that it 

considers factors as; environment conditions, physiological processes such as 

transpiration and characteristics of the crop as leaf area index and biomass 

production. The results found that with the model without calibration the 

simulation are quite similar to those reported (Gallardo et al., 2014) for the 

Autumn-winter season, who evaluated the use of the model VegSyst under 

three scenarios of recommendation of fertilization. 

2.5 Conclusions  

The HortSyst model can be used as a decision-making tool in greenhouse 

production systems, since according to the presented simulation it predicts in an 

acceptable way the biomass, absorbed nitrogen, leaf area index and 

transpiration. In order to model the leaf area index, a new concept called the 

photo-thermal time, which represents the effect of temperature on leaf 

expansion and the effect of radiation on crop growth, which, may be used as an 

alternative to simulate leaf area index in crop models. In fact there are few 

models that include the variable transpiration in order to be used in irrigation 

management, in this case, was used a model that was derived from the 

simplification of Penman-Monteith and for its simplicity can be used to predict 

the consumption of water by the crop, in addition it needs climatic variables that 

are commonly measured in greenhouses. It is necessary to carry out a 

calibration of the model to find the values of the parameters that help to improve 

its predictive quality. Also is necessary carrying out an evaluation (validation) of 

the model, with data of another experiment of the same cycle or different crop 

cycle to evaluate its behavior under different scenarios. Due to the small number 

of parameters (13 parameters) involved in the HortSyst model it is feasible to 
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use it for irrigation management and nitrogen application in hydroponic tomato 

under greenhouse. 
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Abstract 

HortSyst model is a new discrete time model for describing the dynamics of 

photo-thermal time (PTI), total dry matter production (DMP), Nitrogen uptake 

(Nup), leaf area index (LAI) and, transpiration (ETc) for greenhouse crops. The 

first three variables are considered as state variables and the last two are 

conceptualized as output variables. This model was developed to be used as a 

tool for decision support systems in Mexican greenhouses. HortSyst has a total 

of thirteen parameters. In order to test model predictions, an experiment was 

carried out in a greenhouse during the autumn-winter season, in Chapingo, 

Mexico. Tomato (Solanum lycopersicom L.) crop cultivar "CID F1" was grown in 

a hydroponic system. The plants were distributed with a density of 3.5 plants m-

2. The tomato crop was transplanted on 21 August 2015. A weather station was 

installed inside of the greenhouse to measure the temperature, relative humidity 

and, global radiation. It was carried out a calibration of the model to estimate the 

correct parameter values for this crop season. The HortSyst model provides an 

excellent predictive quality for DMP, Nup, LAI and ETc according to the 

statistics; BIAS, RMSE and modellig efficiency (EF). The model proposed and 

described in this paper can be integrated as a decision-support tool for nitrogen 

supply and irrigation management in greenhouse production systems. 

 Keywords: water consumption, extraction curve, decision-support system, 

potential growth model  
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3.1 Introduction 

Plant growth modeling has become a key research activity, particularly in the 

fields of agriculture, forestry, and environmental sciences. Due to the growth of 

computer power and resources and the sharing of experiences between 

biologists, mathematicians and computer scientists, the development of plant 

growth models has progressed enormously during the last two decades. The 

use of an interdisciplinary approach is necessary to advance research in plant 

growth modeling and simulation (Fourcaud et al., 2008). The efficient 

management of intensive agriculture demands consideration of the factors that 

determine the crop production potential and their interactions. The integration of 

these factors under the systems approach and based on growth simulation 

models is an approach that allows the design of practices of management aimed 

at increasing productivity by minimizing the environmental impact caused by 

agricultural activity. Several mathematical models have been developed to 

increase knowledge of cropping systems in greenhouse crops to look for 

practical applications. Specifically for tomatoes have been proposed TOMGRO 

(Jones et al., 1991), TOMSIM (Heuvelink et al., 1999), TOMPOUSSE (Abreu et 

al., 2000) models, which have helped to simulate the behavior of production 

systems. However, some of these models are too complex because they involve 

too many state variables, input variables or parameters, which make their 

implementation difficult. For example the model TOMGRO ver. 1.0 has 69 state 

variables, TOMGRO ver. 3.0 has 574 state variables, or the simplified version of 

this same model that presents 5 state variables and 29 parameters (Vazquez et 

al., 2014). Other models for greenhouse crops, although simpler, have been 

developed for crop systems specific to a region such as the VEGSYST model 

(Gallardo et al., 2011; Gallardo et al., 2014; Gallardo et al., 2016). It is 

necessary to develop models in order to have an optimal control in the 

management of production systems, with the capacity to represent the 

interactions that exist between the development of the crop, climatic conditions 

and physiological processes of water and nutrient uptake. The effect of the ETc 

and irrigation management on the nutritional absorption should be taken into 



 

38 

account to find which concentration of the optimal nutrient solution is the most 

desirable in a production system since the dissolved ions in the nutrient solution 

are transported from the root through mass flow, in which ETc is the process 

that provides the necessary force for the movement of these ions (Mengel et al., 

2001). The perfect synchronization between the amounts of water required for 

growth and the nutritional demand of the crop depend on the environmental 

conditions, thus, the use of a mathematical model could allow to use the water 

supply with high efficiency in greenhouse crops. Nowadays, some of the 

scheduling of irrigation of hydroponic culture used in greenhouses is based 

either on clock timing or by accumulated solar radiation, however these 

strategies are not flexible enough to satisfy the varying crop water requirements 

through the day and during the season. Both irrigation programming methods do 

not take into account the influence of vapor pressure deficit. 

The HortSyst model is a new dynamic discrete time model that predicts: PTI, 

DMP, Nup, LAI and ETc. The development of this model started by modifying 

the structure of the VEGSYST model (Gallardo et al., 2011; Giménez et al., 

2013; Gallardo et al., 2014; Gallardo et al., 2016) proposed for greenhouse 

crops. However, these modifications became increasingly large and ended up 

being a new model considerably simpler and with predictive quality equal or 

better than the VegSyst model. The objective of this work is to describe the 

mathematical model HortSyst that was developed as a tool capable of being 

used by growers in the nitrogen supply from the simulation of daily DMP and 

irrigation programming using the transpiration in a crop of hydroponic tomato 

(Solanum lycopersicom L.) in a greenhouse. In addition, a LAI model was 

included in the simulation this was estimated by the concept PTI, also a 

calibration of the parameters was carried out of the model. 

3.2 Materials and methods  

3.2.1 HortSyst Model Description 
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The HortSyst model is a nonlinear dynamic growth model for hydroponic 

systems, for tomato (Solanum lycopersicom L.) in greenhouses. This model was 

developed and adapted to be used as a tool for decision support systems in 

Mexican greenhouses. The model assumes that crops have no water and 

nutrient limitations, also that the crop is free of pests and diseases and it was 

cultivated under the management of the cultural activities similar to commercial 

greenhouses. The HortSyst model predicts crop biomass production 

(DMP, 𝑔 𝑚−2), N uptake (Nup, 𝑔 𝑚−2), photo-thermal time (PTI, 𝑀𝐽 𝑑−1) as state 

variables and the crop transpiration (ETc, 𝑘𝑔 𝑚−2) and leaf area index 

(LAI, 𝑚2𝑚−2) as output variables. The model input variables are hourly 

measurements of air temperature (°C), relative humidity (%), and integration of 

solar radiation (𝑊𝑚−2) and It has thirteen parameters (Table 3.1). 

The following Forrester diagram (Figure 3.1) summarizes the functional 

relationship that exists between the components of the model as inputs, outputs, 

parameters and state variables. 

 

Figure 3.1. Forrester diagram for HortSyst model of a greenhouse tomato crop. 
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The HortSyst model predicts in discrete time, namely, by means of difference 

equations, the behavior of the three state variables; the photo-thermal time 

(equation 1), the total DMP (equation 2) and the Nup (equation 3). 

PTIjPTIjPTI  )()1(                                                                                           (1)                            

DMPjDMPjDMP  )()1(                                                                                     (2) 

upupup NjNjN  )()1(                                                                                          (3) 

Where the values of each variable in discrete time 𝑗 + 1 are calculated by adding 

the values of the variables in the previous discrete time 𝑗 plus the rate of change 

∆ corresponding to each variable. The PTI is defined as the state variable that 

couples the effect of radiation and temperature on the crop because these 

variables from the point of view of the climate in the greenhouse are not strongly 

correlated as they are in the open field (De Reffye and Hu., 2003; Xu et al., 

2010; Dai et al., 2006). In contrast to other researchers who have modeled the 

LAI as a function of time or as a function of the degree days (Carmassi et al., 

2013; Chin et al., 2011; Massa et al., 2011; Medrano et al., 2008) or others who 

have used the days after transplant (Medrano et al., 2005; Ta et al., 2011) or  

the specific leaf area (Bechini et al, 2006), in the HortSyst model, the PTI is the 

independent variable in the calculation of the leaf area index of the crop. In the 

VEGSYST model, the thermal time is the state variable that drives the daily 

calculation of DMP, Nup and ETc. However, it is important to consider the 

radiation, because it directly influences in crop growth (DMP) and development 

(morphogenesis).  

The rate of change of the photo-thermal time (∆𝑃𝑇𝐼) depends on the 

photosynthetically active radiation(PAR), normalized thermal time (TT) and the 

intercepted fraction of radiation(𝑓𝑖−𝑃𝐴𝑅). 

                 (4) 
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where the index 𝑖 represents hourly calculations, index, 𝑗 represents daily level, 

𝑃𝐴𝑅 is photosynthetically active radiation which is calculated from the daily 

global radiation above the crop (𝑅𝑔, 𝑊 𝑚−2). 

𝑃𝐴𝑅 =  0.5 × 𝑅𝑔                                                                                                 (5) 

 𝑇𝑇 °C is the normalized thermal time. This concept is used by other researchers 

like (Bechini et al., 2006; Soltani and Sinclair, 2012;), which is defined as the 

ratio of the rate of growth under real conditions of optimal temperatures and it is 

calculated as follows: 

𝑇 =

{
 
 

 
 
0 (𝑇𝑎 < 𝑇𝑚𝑖𝑛)
(𝑇𝑎 − 𝑇𝑚𝑖𝑛)/(𝑇𝑜𝑏 − 𝑇𝑚𝑖𝑛) (𝑇𝑚𝑖𝑛 ≤ 𝑇𝑎 < 𝑇𝑜𝑏)
1 (𝑇𝑜𝑏 ≤ 𝑇𝑎 ≤ 𝑇𝑜𝑢)
(𝑇𝑚𝑎𝑥 − 𝑇𝑎)/(𝑇𝑚𝑎𝑥 − 𝑇𝑜𝑢) (𝑇𝑜𝑢 < 𝑇𝑎 ≤ 𝑇𝑚𝑎𝑥)
0 (𝑇𝑎 > 𝑇𝑚𝑎𝑥)

                                           (6) 

where Ta (°C) is the temperature of the air, minT  (°C) is the minimum temperature, 

maxT (°C) is the maximum temperature, 𝑇𝑜𝑏 (°C) is the lower optimal temperature 

and 𝑇𝑜𝑢 (°C) is the upper optimal temperature.  

The intercepted fraction of the radiation is calculated by the exponential function: 

))(exp(1 jLAIkf PARi                                                                                        (7) 

where 𝑘 is the light extinction coefficient, and 𝐿𝐴𝐼 is the leaf area index which it 

is calculated from the leaf area value 𝐴𝑓 ( 2m ) and depends on the daily photo-

thermal time (∆𝑃𝑇𝐼) by an equation type Michaelis-Menten 

d
jPTIc
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










)(

)(
)(

2

1

                                                                                      (8) 

where 𝑐1 (
-2m ) and 𝑐2 are parameters of the Michaelis-Menten equation and 𝑑 (

-2mplants ) is the density of the crop. 
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The model uses a classical concept approach, efficient radiation application (De 

Reffye et al., 2009) which allow the calculation of daily increase total DMP 

(∆𝐷𝑀𝑃) as a function of the photosynthetically active radiation (PAR) equation 

(5), crop characteristics such as LAI equation (8) and the radiation use efficiency 

parameter (RUE, -1gMJ ). This approach has been applied by several 

researchers (Gallardo et al., 2016; Shibu et al., 2010; Soltani and  Sinclair, 

2012). 

)()( jPARfRUEjDMP PARi  
                                                                            (9) 

The value of (∆𝐷𝑀𝑃) accumulates day by day as in equation (2). For the 

purpose of the model, it is not necessary to estimate the partitioning of the DMP 

in different organs of the plant, since the nutritional extractions of a crop are 

made from the total biomass produced (Lemaire et al., 2007; Tei et al., 2002a), 

for purposes of the nutrition management. 

Once the daily DMP is calculated, it is possible to calculate the daily Nup by the 

equation (10, 11) (Tei et al., 2002) an it is accumulated with equation (3), so the 

calculation of the total nitrogen extraction is obtained throughout the crop 

growing period (ΔDMP).  

  b
jDMPajN


 )()(%                                                                                           (10) 

  )(100/)(%)( jDMPjNjNup                                                                                  (11) 

where 
upN  is the daily Nup ( 2mg ), a  andb  are parameters of the equation 

and DMP is the increase of daily total dry matter produced ( 2mg ). 

Finally, ETc )( 2mkg  is calculated every hour using the equation proposed by 

Baille et al. (1994), which has been widely used to schedule irrigations in 

greenhouse crops (Carmassi et al., 2013; Martínez et al., 2012; Massa et al., 

2011). The Baille transpiration model requires the global radiation and the vapor 

pressure deficit data. VDP is calculated with values of the air temperature, 
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relative humidity, and leaf area index. The equations of the ETc in HortSyst 

model are described as follows: 

    ),()()()())(exp(1 ndBiVPDjLAIiRgjLAIkAiETc                    (12) 

   



24

1

1
i

iETcjETc                        (13) 

where )1( jETc  ( 12  dmkg ) is the daily accumulated transpiration,  )(iETc (

12  hmg ) is the hourly transpiration, 
gR  is the hourly  incident of global solar 

radiation ( 2mW ), VPD is the vapor pressure deficit and A  (dimensionless) 

refers to the radiative parameter; and dB , nB  ( 12 kPamW ) are parameters of the 

aerodynamic term of equation (12) for day and night, respectively. 

3.2.2 The computational model 

The HortSyst is currently programmed in the Matlab computing environment. 

The dynamic equations are coded inside a Matlab subroutine (function). Two 

iterative loops allow computing daily and hourly calculations. The outputs of the 

subroutine are the variables; PTI, total DMP, Nup, ETc, and LAI. The input 

variables of the subroutine are the model parameters (Table 1) and climatic 

variables (Figures 3.2 and 3.3). The main program (Matlab script) calls the 

subroutine and generating graphs or other calculations necessary to run the 

simulations. 

3.2.3 Tomato growth experiments description 

The experiment was carried out under greenhouse conditions, during the 

autumn-winter season, located at the University of Chapingo, Mexico. 

Geographical location: 19° 29’ NL, 98° 53’ WL and 2240 m. A tomato (Solanum 

lycopersicom L.) crop cultivar "CID F1" was grown in a hydroponic system using 

volcanic sand as a substrate and it was fertilized with Steiner nutrient solution 

(Steiner, 1984). Plants were distributed with a density of 3.5 plants m-2. For the 
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experiment, tomato seeds were sown on 18 July 2015 and the plants were 

transplanted on 21 August 2015 in a type chapel glasshouse with 8 x 8 m 

dimensions. A HOBO weather station (Onset Computer Corporation) was 

installed inside of the greenhouse. The air temperature and relative humidity 

were measured with an S-TMB-M006 model sensor placed at a height of 1.5 m. 

Global radiation was measured with an S-LIB-M003 sensor and was located 3.5 

m above the ground. Both sensors were connected to a data logger U-30-NRC 

model in which the environmental variables data were recorded every minute.  

Three plants were chosen randomly for the samples each ten days to measure 

total dry matter, Nup accumulation and LAI. Plants were dried out during 72 h at 

70 °C. And nitrogen was determined by Micro-Kjeldahl method. LAI was 

determined by a nondestructive procedure which consisted of taking four plants 

randomly in order to get measurements of width and length of the plants' leaves 

and the total leaf area was measured with a plant canopy analyzer LAI-3100 

(LICOR, USA). From the measurements, nonlinear regression models were 

fitted in order to estimate the LAI. The crop transpiration was measured every 

minute by means of a weighing lysimeter located in a central row of the 

greenhouse, the device includes an electronic balance (scale capacity =120 kg, 

resolution ±5 g) equipped with a tray carrying four plants. The weight loss 

measured by the electronic balance was assumed to be equal to the crop 

transpiration. 

Table 3.1. Model parameters used for HortSyst model during greenhouse 
growing condition.  

No Output Parameter Symbol Units Nominal 

Value 

(autumn-

winter) 

source 

1  

 

 

 

Top upper temperature Tmax °C 35.00 Peet & Welles 

(2005), Chu et al., 

(2009) 

2 Top bottom temperature Tmin °C 10.00 Peet & Welles 

(2005), Chu et al., 

(2009) 
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3  

 

DMP 

Optimum minimum 

temperature 

Tob °C 17.00 Peet & Welles 

(2005) 

4 Optimum maximum 

temperature 

Tou °C 24.00 Peet & Welles 

(2005) 

5 Radiation Use Efficiency RUE g MJ-1 4.01 Gallardo et al., 

(2014) 

6  

PTI 

Extinction coefficient k --- 0.70 ----- 

7 PTI initial condition PTIini  𝑀𝐽 𝑑−1 0.025 ----- 

8  

 

 

Nup 

N concentration in the 

dry biomass at the end 

of the exponential 

growth period 

 

a 

 

g m-2 

 

7.55 

Gallardo et al., 

(2014) 

9 Is the slope of the 

relationship 

b --- -0.15 Gallardo et al., 

(2014) 

10  

LAI 

Slope of the curve c1 m-2 2.82 Estimated 

11 Intersection coefficient c2 --- 74.66 Estimated 

12  

 

 

ETc 

Radiative coefficient A --- 0.3 (Sánchez et al., 

2011) 

13 Aerodynamic coefficient 

during day 

Bd W m-2 kPa-1 18.7 (Sánchez et al., 

2011) 

14 Aerodynamic coefficient 

during night 

Bn W m-2 kPa-1 8.5 (Sánchez et al., 

2011) 

3.2.4 Mode calibration and goodness of fit statistics 

The nominal parameters listed in Table 3.1 were used to judge the predictive 

quality of the HortSyst model. The Bias (BIAS), root mean squared error 

(RMSE) and Modeling efficiency (EF) statistics (Table 2) were considered to 

evaluate the performance of simulation of the calibrated and non-calibrated 

model and also the 1:1 plots between simulated and measured data were used. 

An appropriate method to perform model calibration is the nonlinear least 

squares estimation. A parameters vector 𝑝 minimize the sum of square errors 

(Vazquez et al., 2014). 

𝑝̂ = argmin 𝐽 (𝑝)                                                                                                                    (14) 
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Where hw  is the relative weight of each output, 𝑦̅ℎ(𝑡𝑖, 𝑝) is the simulated output, 

𝑦ℎ in time 𝑡𝑖 , 𝑦ℎ(𝑡𝑖) is the measurement  𝑦ℎ(𝑡𝑖) in time 𝑡𝑖, (𝐿 = 5) is the number 

of outputs, M is the number of samples during the crop period 𝑦ℎ in time 𝑡𝑖, 𝑝 is 

the parameters set of calibration and 𝑝̂ is the parameter that reduces 𝐽(𝑝) to a 

minimum. 

The performance of the non-calibrated and calibrated models was evaluated 

using the BIAS and the RMSE, and EF statistics was defined as follows 

(Wallach et al., 2014): 
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where the number of measurements is 𝑁, 𝑌𝒊  is the measured value for situation 

𝑖 and 𝑌̅𝑖 is the corresponding value predicted by the model. 

3.3 Results 

3.3.1 Simulation of HortSyst Model 

3.3.1.1 Input variable 

The global solar radiation (Rg), air temperature (Ta), and relative humidity (RH) 

used in the simulations of the HortSyst model for the season autumn-winter are 

shown in Figure 3.2 and 3.3. The nominal values of the model parameters are 

given in Table 3.1. According to the measured data of Figure 3.2, it is clear that 

the amount of global radiation accumulated in the autumn-winter season is too 

low, because of the rain period and so most of the days are cloudy. In addition, 
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likely the type of greenhouse where the experiment was carried out has a strong 

effect on the radiation interception, because of the cover of shade placed on the 

roof of the greenhouse, the highest daily value measured of the global radiation 

was 8.89 MJ m-2 d-1, the average was 3.99 m-2 d-1 and the minimum value of 

0.88 m-2 d-1.  

Figure 3.3 shows the daily average of the air temperature and relative humidity 

during the crop cycle, the maximum temperature measured was 21.83 oC, the 

mean was 18.31 oC and the minimum of 14.12 oC and for HR the maximum 

recorded value was 93.98%, the average was 78.58% and the minimum of 

62.59% during the whole crop cycle. The low level of radiation and temperature 

recorded  has its effect on the reduction of the accumulation of total DMP, Nup, 

and LAI, for this season and the high values of RH reduce the VPD and this 

affects directly on the ETc of the crop. 

 

Figure 3.2.The daily average global radiation measured inside of the 
greenhouse located in Chapingo, Mexico during autumn-winter 
season, 2015 
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Figure 3.3.Air temperature and relative humidity daily average measured inside 
of the greenhouse, located in Chapingo, Mexico, during autumn-
winter season, 2015 

3.3.1.2 Dry matter Production (DMP) 

Figure 3.4a shows the simulations of DMP by the HortSyst model with and 

without calibration.  The RUE nominal value was 4.01 g MJ-1 (Gallardo et 

al.,2014), and  the value of RUE resulted from calibration was 4.86 g MJ-1. It 

was found that the simulations follow the trend of the measured values in the 

laboratory. The accumulated values of total DMP simulated at end of the crop 

cycle without calibration of 587.370 g m-2 and the calibrated value of 697.290 g 

m-2 against a measured value of 673.380 g m-2. According to the statistics 

showed in Table 3.2 the BIAS value of the non-calibrated model simulations 

indicates that exists an under-estimation of the predicted values and conversely, 

for the calibrated model the BIAS indicates a slightly over-estimation of the 

predicted values of the model. The reduction of the RMSE between the non-

calibrated and calibrated model was more that three times. The EF values also 

improved significantly when the model was calibrated, as it can see in Figure 

3.4a at a glance how the model estimations and measurements correspond. 

This is also confirmed by the 1:1 plot showed in Figure 3.4b. In the experiment, 
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total DMP shows firstly an exponential growth and then an approximately linear 

growth phase, which is a growth pattern expected. 

 

Figure 3.4. Time course of the simulated and measured values of total DMP with 
and without calibration of the HortSyst model of a greenhouse 
tomato crop grown in Chapingo, Mexico, b) 1:1 plot for simulated 
values by the calibrated model and measured values 

3.3.1.3 Nitrogen Uptake (Nup) 

Figure 3.5a shows a comparison between the measured and predicted values 

by the HortSyst model, for the Nup during the crop cycle. In this case, a 

satisfactory fit between the simulations and measurements is observed for this 

output, the accumulation of the Nup at the end of the crop predicted by the 

simulation with the non-calibrated and calibrated model were 19.960 g m-2 and 

14.466 g m-2, respectively against the measured value of 13.71 g m-2. The 

calibrated parameters of this variable were (a = 5.850 and b = -0.190). 

According to the statistics values (Table 3.2) the BIAS the model over-estimate 

Nup in case of non-calibrated and calibrated model. However, the BIAS close to 

zero obtained by the calibrated model means that the quality of prediction 

improved considerably by calibration. In fact the RMSE value decrease more 

that six times after calibration. Also the EF values improved from 0.6 to 0.9. The 

Figure 3.5 b) shows accurate predictions of Nup by HortSyst model.    
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Figure 3.5.Time course of the simulated and measured values of Nup with and 
without calibration of the HortSyst model of a greenhouse tomato 
crop grown in Chapingo, Mexico, b) 1:1 plot for simulated values by 
the calibrated model and measured values 

3.3.1.4 Leaf Area Index (LAI) 

Because a lack of information in the literature for the parameters of this variable 

(c1 and c2) a manual calibration was carried out in order to determine the 

possible values that could be used in the simulation for the growing period, this 

means that a pre-calibration was carried out using the Matlab programming 

software to fit the leaf area versus PTI separately of the whole HortSyst model. 

The LAI variable plays a central role in the model since, from this variable 

simulated the PTI, DMP and ETc are predicted. The considered values of the 

parameters (c1 and c2) are shown in Table 3.1. The cumulative LAI values of the 

simulation at the end of the crop cycle for non-calibrated and calibrated model 

are quite similar to the measured these were 5.850 m2 m-2, 5.785 m2 m-2, and 

5.780 m2 m-2, respectively. The calibrated parameters of LAI were c1 (2.649) 

and c2 (63.461). According to the statistics BIAS, RMSE and EF showed in  

Table 3.2 the performance behavior of the model with the pre-calibration and the 

calibration are the same which means that the local calibration of the LAI sub-

model had no effect on the global calibration of the VegSyst model. The small 

values for BIAS and RMSE and the EFF value of 0.99 indicates that the LAI 

predictions follow accurately the measurements (Figure 3.6b).  
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Figure 3.6. Time course of the simulated and measured values of LAI with and 
without calibration of the HortSyst model of a greenhouse tomato 
crop grown in Chapingo, Mexico, b) 1:1 plot for simulated values by 
the calibrated model and measured values 

3.3.1.5 Crop transpiration rate (ETc) 

For the ETc variable in Figure 3.7a, using the parameter values shown in Table 

3.1 for A, Bd, and Bn it was found that the goodness of fit statistics using the 

parameters of the literature was not satisfactory. So that fact justifies the 

calibration of the model, with the goal of greatly improving the statistics, these 

parameters changed with the calibration for A (0.628), Bd (28.571) and Bn (5.0). 

According to the BIAS statistic the calibrated model improve more than six 

times. The RMSE was also smaller in case of the calibrated model. And the 

modelling efficiency also got better (Table 3.2). The water uptake accumulated 

at the end of crop production for non-calibrated model was 108.970 kg m-2, 

calibrated was 197.262 kg m-2 and measured was 183.68 kg m-2. The calibrated 

simulation slightly underestimates the ETc before 50 DAT and overestimates 

after the days 50 DAT (Figure 3.7b), so when the crop has less than 3 m2 m-2 of 

LAI, the prediction is accurate. To apply the model in the scheduling of irrigation 

it is necessary to evaluate the ETc hourly. A comparison of the measured and 

predicted transpiration by the calibrated HortSyst model is showed (Figure 3.8). 
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Figure 3.7.Time course of the simulated and measured values of ETc with and 
without calibration of the HortSyst model of a greenhouse tomato 
crop grown in Chapingo, Mexico b) 1:1 plot for simulated values by 
the calibrated model and measured values 

 

Figure 3.8.Time course of the simulated and measured values of ETc calibrated 
from 13 to 30 September 2005 of a greenhouse tomato crop grown 
in Chapingo, Mexico  

3.3.1.6 Photo-thermal time (PTI) 

Figure 3.9a shows the PTI variable that is used by the HortSyst model to 

calculate the LAI. PTI behavior is similar to the one reported by Xu et al. (2010). 

Figure 3.9b shows the relationship between PTI and LAI through a Michaelis-

Menten type function. This PTI model gave a satisfactory prediction of LAI, using 

the temperature and PAR radiation data, the parameter that was calibrated for 



 

53 

this variable was the initial condition PTIini (0.013 𝑀𝐽 𝑑−1).The amount of PTI 

accumulated in autumn winter was 105.271𝑀𝐽 𝑑−1. The HortSyst model 

simulates PTI and LAI during the crop cycle this is the main differences between 

other models like VEGSYST and CROPSYST models (Stockle et al., 2003). 

 

Figure 3.9.Time course of the predicted of PTI by HortSyst model, accumulated 
from day after transplant for autumn-winter b) relationship between 
PTI vs LAI 

Table 3.2. Summary of the results of the statistical indices; BIAS, RMSE and EF 
used to evaluate the performance of the HortSyst model simulation 
for DMP, Nup, ETc, and LAI during autumn-winter, 2015. 

  HortSyst 

no 

calibration 

  HortSyst      

Calibrated 

 HortSyst 

no 

calibration 

HortSyst 

Calibrated 

Statistics     DMP (g m-2) Statistics        LAI (m-2 m-2) 

BIAS 37.443 -3.897 BIAS -0.028        0.026 

RMSE 53.599 14.543 RMSE 0.099 0.100 

EF 0.952 0.996 EF 0.998 0.998 

     Nup (g m-2)           ETc (g m-2h-1) 

BIAS -2.551 -0.071 BIAS 20.618 3.647 

RMSE 3.179 0.500 RMSE 46.417 39.330 

EF 0.635 0.991 EF 0.743 0.815 

Figure 3.10 shows the daily Nup concentration, predicted by the model in order 

to show a potential use of the HortSyst model to predict the concentration of 
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Nup of the crop as a function of the ETc for the autumn-winter crop cycle. As 

can be seen in Figure 3.10 during the first 20 days after transplant (DAT), the 

Nup concentration by crop exceeds the concentration of 12 me L-1 (168 mg L-1) 

recommended by Steiner, (1984), from 20-50 DAT the concentration decreases 

gradually from 12-6 me L-1  and finally after 50 DAT the concentration decreases 

approximately up to less of half of the recommended concentration. With the 

evaluation of the performance of the model, it was found that with model 

application it would be having a saving of approximately 50% of the applied 

fertilizer considering an efficiency of 100% of the system production under 

soilless culture this mean a management with zero drainage. 

 

Figure 3.10.Time course of simulation of daily value of N concentration (me L-1) 
nitrogen uptake during autumn-winter, 2015. 

3.4 Discussion 

HortSyst model predicts correctly DMP, PTI and predicts accurately LAI, 

however, the quality of prediction of Nup and ETc is poor using the nominal 

values of its parameters. This means that after calibration the model improved 

the predictive quality not only for Nup or ETc also for the parameter of the other 

output variables estimation by using experimental data. Because of the results 

obtained in the simulation using the RUE value of 4.01 g MJ-1 reported by 
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Gallardo et al.(2016) for prediction of DMP the quality of the simulated values is 

quite acceptable but was necessary to carry out the calibration to find the exact 

value of RUE. For this output at the end of the cycle are slightly lower than those 

reported by Gallardo et al. (2014) for autumn-winter. The value of RUE of 4.867 

g MJ-1 (d= 3.5 plant m-2) from the model calibration is higher than 4.1 g MJ-1 for 

density of 2.0 plant m-2 reported by  Gallardo et al. (2014), and the value 3.0 g 

MJ-1 for winter and summer found by Challa and Bakker (1999), 1.05 g MJ-1 for 

the same season with 1.1 plant m-2 of density crop according to Scholberg et al. 

(2000) and 1.89 – 2.44 g MJ-1 (Tei et al., 2002a). These values of RUE are 

probably different due to differences in climatic conditions between one region 

and another and the management of the culture (Cota et al.,2014.). Also RUE is 

affected by vapor pressure (Kemanian et al., 2004) and abiotic factors as 

drought, low temperatures (Soltani and Sinclair, 2012) and nutrients availability, 

the crop growing location and the crop varieties (Muurinen and Sainio, 2006). 

Furthermore, of all plant nutrients, nitrogen is the one that most influences on 

RUE parameter. The RUE value comparison between species with respect to 

photosynthetic processes indicates that C4 species have higher RUE than C3 

species (Muurinen and Sainio, 2006). 

The amount N extracted by the tomato crop as a result of the calibrated model 

at the end of the cycle was 14.466 g m-2 is the half of the quantity (30 g m-2) of 

the spring-winter season reported by Gallardo et al., (2014), 25 g m-2-28 g m-2 

found by Tei et al. (2002a) and 25-35 g m-2 by Elia and Conversa, (2012) and 

approximately close to the measured value by (Pineda-Pineda et al., 2009). The 

difference in the values accumulated for Nup at the end of the crop cycle is 

because in each cycle the environmental conditions are not the same at least in 

the levels of radiation because of the location and maybe the temperature 

variation between the day and night. In this case, the model did not show a 

satisfactory fit for without calibration, but with the calibration, it reached all 

measured data. The calibrated parameters of the nitrogen content were a = 

5.850 and b = -0.190; this means that there is a decline in N% with an increase 

of DMP and it follows a similar pattern across a range of crops. The value of the 
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parameter a is smaller than a = 7.55 found by Gallardo et al. (2014) and a = 

2.29–5.41 found by Tei et al. (2002a), the b parameter from the calibration was 

slightly higher than b= -0.15 (Gallardo et al., 2014) and lower than b = -0.25 and 

-0.36 (Tei et al., 2002b). These differences in the parameters are probably the 

variety of crops, season, environmental condition and the management of the 

culture systems. 

The modeling of LAI is one of the important differences of the HortSyst model 

with respect to the VEGSYST model since this variable was not included in 

VegSyst model. However, the relevance of LAI in crop growth models has been 

recognized by several researchers (Goudriaan and van Laar, 1994; Wallach et 

al., 2014; Thornley and France, 2007; Soltani and Sinclair, 2012). As a matter of 

fact, to improve the performance of a new model it is important to include this 

variable as state or auxiliary variable.  

The final accumulated of the ETc by calibration process value for the autumn- 

winter was 197.262 kg m-2 is close (  ̴200 mm) at 110 DAT reported by Gallardo 

et al. (2014, 2016) and by Zotarelli et al. (2009). It is important to mention that 

the methodology to model water consumption by Gallardo et al. (2014, 2016) 

was different since they used the Penman-Monteith model with growth 

coefficients the disadvantage of using this approach is that does not allow to 

schedule the irrigation in soilless culture because in these systems are needed 

providing the irrigation with high frequency and low flow irrigation. The 

calibration for A was 0.628, Bd (28.571) and Bn (5.0). The value of the 

parameter A from calibration is lower than A = 0.946 found by (Massa et al., 

2011) and higher than  A = 0.372 mentioned by Martínez et al. (2012) and closer 

to A = 0.59 reported by Montero et al. (2001). The Bd and Bn parameters are 

lower than B = 30 (Martínez et al., 2012) and higher than Bd (19.1) reported by 

Medrano et al. (2008) and Sánchez et al. (2011) the values of the Bn resulted 

much lower than (Bn = 26.0) found by Medrano et al. (2008), and slightly lower 

of Bn = 8.5 (Sánchez et al., 2011). The difference between parameters of the 

calibration against the parameter values found in the literature reviewed is that 
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the times of simulations of the ETc, because in each research are different. The 

model of transpiration used in HortSyst model according to Medrano et al. 

(2005) who calibrated this model for a cucumber crop for spring-summer and 

autumn-winter found that for the autumn winter season the model does not fit 

very well. This , fact agrees with the results that are presented in this research 

the problem is due to the low level of radiation and VPD during this crop season. 

In the case of PTI, Xu et al. (2010) found that modeling the LAI using this 

concept provides better predictions than using the thermal time concept alone. 

The models based on thermal time could overestimate or underestimate the 

predictions of LAI because of the fact that inside of the greenhouse the global 

radiation is not synchronized with the temperature behavior inside of the 

greenhouses (De Reffye et al., 2009; Xu et al., 2010). On the other hand, when 

comparing the estimation of LAI using the specific leaf area as used in (Stockle 

et al., 2003) presents a poor prediction due to the large variation of the specific 

leaf area between different growing seasons and the data of this latter variable 

can only be obtained by destructive measurements. This can limit the 

application of models based on specific leaf area of greenhouse crops and 

climate management practice (Xu et al., 2010).The advantage of using a 

mathematical model to make fertilization recommendations is that it considers 

factors as; environmental conditions, physiological processes such as ETc and 

characteristics of the crop as LAI and DMP. The results show that with the 

developed model with parameters estimated the simulations of N concentration 

turned out to be quite similar to those reported by Gallardo et al. (2014) for the 

Autumn-winter season, who evaluated the use of the model VEGSYST under 

three scenarios of the recommendation of fertilization. 

3.5 Conclusions  

Excellent predictive quality for DMP, Nup, LAI, and ETc provides the simulation 

carried out by HortSyst model with the parameters estimated. This is confirmed 

by the quality of the predictions shown in the previous figures and the statistic 

values of BIAS, RMSE, and EF found in this research and with the calibration of 
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the model were found the optimum values of the parameters that attain the best 

fit between predictions and measurements for autumn-winter season for 

tomatoes crop under soilless culture. The calibration of the HortSyst model was 

successful to find these values of the parameters that helped to improve its 

predictive quality. The HortSyst model can be used as a decision-making tool in 

greenhouse production systems since according to the presented simulation, it 

predicts in an accurate way the total DMP, Nup, LAI, and ETc. In order to model 

the LAI, a new concept called the PTI, which represents the effect of 

temperature on leaf expansion and the effect of radiation on crop growth, may 

be used in crop models. In fact, there are few models that include the variable 

ETc in order to be used in irrigation management, in this case, was used a 

model that was derived from the simplification of Penman-Monteith was used 

and its simplicity it can be used to predict the consumption of water by the crop. 

Furthermore, it needs climatic variables that are commonly measured in 

greenhouses. However, more research is needed to improve the ETc model 

predictions for the Autumn-winter cycle when the levels of radiation and VPD are 

low. However, it is necessary carrying out an evaluation of the model, with data 

from another experiment in a different crop cycle to evaluate its behavior under 

different scenarios. Due to the small number of parameters (thirteen 

parameters) involved in the HortSyst model, it is feasible to use it for irrigation 

management and nitrogen application in hydroponic tomato under greenhouses. 
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Abstract 
 
The HortSyst is a new nonlinear dynamic growth model for hydroponic systems, 

for tomatoes grown in greenhouses without any water and nutrient limitations. 

The aim of this research was to determine the uncertainties of outputs model 

predictions because of the uncertainty of the model parameters variation with 10 

and 20%. It was assigned a uniform probability density function to the 

parameters and a Latin Hypercube sampling (LHS) was used. Both a frequentist 

uncertainty analysis procedure and also the Generalized Likelihood Uncertainty 

Estimation (GLUE) methods were used. Two experiments were carried out 

under greenhouse conditions, during the season autumn-winter and spring-

summer. For probability distributions analysis of output variables; the minimum, 

maximum, mean, Skewness, and Kurtosis values besides histograms, 

confidence intervals, RMSE, and scatterplots were analyzed. According to the 

results obtained by the frequentist UA the model predictions are reliable. The 

95% confidence intervals calculated by the GLUE procedure confirmed this 

observation and additional it could be an important tools to parameter estimation 

of the model.  

Keywords: model simulation, transpiration, potential growth, nitrogen 

management 
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4.1 Introduction 
 

Several models have been developed during the last two decades for simulation 

of the growth and development of a tomato crop, but only a few of them simulate 

growth, development and yield. One of the main objectives of these models is 

their use as a tool for optimizing greenhouse climate control and the evaluation 

of management practices (Cooman and Schrevens, 2006). Integrating 

environmental models have emerged as useful tools supporting research, policy 

analysis, and decision making (Matott et al., 2009). Crop models have been 

developed to simulate the complex interactions between crop management, soil, 

and atmosphere, to make the prediction of crop yield and environmental impacts 

of cropping systems. Because of, the yield formation depends on dry matter 

production, crop development strongly interacts and may be affected by water 

and nutrient limitations. These interactions are particularly complex in species 

that exhibit an indeterminate growth pattern such as tomatoes in which new 

flowers are continuously being produced for a certain amount of time as far as 

environmental conditions remain favorable (Valdés et al., 2014).  

The HortSyst is a new nonlinear dynamic growth model for hydroponic systems, 

for tomatoes (Solanum lycopersicom L.) grown in greenhouses. This model was 

developed to be used as a tool for decision support systems and assumes that 

crops have no water and nutrient limitations. The HortSyst model predicts crop 

dry matter production, N uptake and photo-thermal time as state variables and 

crop transpiration and leaf area index as output variables. HortSyst model was 

developed based on VegSyst model (Gallardo et al., 2011; Gallardo et al.,2014; 

Gallardo et al.,2016; Giménez et al., 2013; Granados et al., 2013). It has thirteen 

parameters. A common approach to decision support based on a model, define 

the boundaries of the system and its structure, the elements, and the link flows 

and the relationship between these elements (Walker et al., 2003) to explain the 

cause-effect relationships characteristics of the systems.  

In a mathematic model, the relationships between the components of the system 

are expressed as functions, and then a computer program makes a translation 

of this mathematical model into computer code in decision support activities. 
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Thus, the focus of a modeling exercise is typically on the response of a system 

to outside forces. To evaluate the system’s simulation (resulting values of the 

outcomes of interest) many analytical tools have been used to deal with the 

uncertainties of the unknown and unknowable future (Walker et al., 2003). 

Uncertainty assessment of model simulations is therefore, important, for 

example, when the model is used to support water and nutrient management 

decisions, for integration of model results into the broader water and nutrient 

management process and to increase the effectiveness of knowledge production 

and use. Refsgaard et al. (2005) have emphasized the relevance of performing 

an uncertainty analysis on a going theme from the beginning with problem 

definition and identification of modeling objectives and then throughout the 

modeling process. In order to be most useful, the decision support model should 

also include information about the uncertainties related to each of decision 

options, as uncertainty of the desired outcomes may be the central criterion for 

the selection of the management policy (Uusitalo et al., 2015; Wallach et al., 

2014) . Several researchers have described uncertainty as manifesting itself at 

the different location in the model based on the water management process (Gal 

et al., 2014; Helton et al., 2005; Walker et al., 2003; Wallach et al., 2014). This 

location, or sources, may be characterized as follows; i) context and framing (at 

the boundaries of the systems to be modelled), ii) inputs (external driving force 

and system data that drive the model, climate data), iii) model structure (is the 

conceptual uncertainty due to incomplete understanding and simplified 

description of modelled process), iv) parameter (the uncertainty related to 

parameter value), v) model technical (is the uncertainty arising from computer 

implementation of the model, due to numerical approximation resolution in 

space and time, and bugs in the software). Several methodologies and tools 

suitable for supporting uncertainty assessment have been developed and 

reported in the scientific literature, these methods represent the commonly 

applied types of methods and tools, such as: Data uncertainty engine, error 

propagation equations, expert elicitation, extended peer review, inverse 

modeling, Monte Carlo analysis, multiple model simulation, multidimensional 
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uncertainty assessment, quality assurance, scenario analysis, sensitivity 

analysis, Stakeholder involvement, uncertainty matrix and Bayesian approach 

(Refsgaard et al., 2007) .There are few studies that report the type of frequentist 

uncertainty analysis (Monte Carlo) applied to crop models specifically in 

greenhouses, some of these are the TOMGRO model applied for tomato 

(Cooman and Schrevens, 2006), or the NICOLET model for lettuce crop (López 

et al., 2012), most of the researches has focused on open field crops, for 

example the uncertainty analysis applied to the CERES-maize model described 

by Bert et al. (2007) and Li et al., (2012), SALUS model for maize, Peanut and 

cotton (Dzotsi et al., 2013), and the WARM rice model (Confalonieri et al., 

2016). The uncertainty analysis applying Bayesian methods is still less common 

even for open field crops, for example Iizumi et al. (2009) studied the uncertainty 

using the Bayesian approach for the SIMRIW model for paddy rice, and  Pathak 

et al. (2012) used the GLUE procedure (Bayesian approach) for CSM-

CROPGROW-Cotton model.  

The aim of this research was carried out an uncertainty analysis of the HortSyst 

model parameters. These were considered fixed at the time. The uncertainty of 

output variables was defined as the variation caused by the output quantified by 

its variation coefficient, when the parameters were varied 10% and 20% around 

its nominal values, assigning them a uniform probability density and using Latin 

Hypercube Sampling (LHS), with frequentist uncertainty (Monte Carlo) method 

and Generalized Likelihood Uncertainty Estimation (GLUE) methods for autumn-

winter and spring summer crop season. 

4.2 Material and methods 
 

4.2.1 Greenhouse condition and data acquisition 

Two experiments were carried out under greenhouse conditions, during the 

autumn-winter, and spring-summer season, located at the University of 

Chapingo, Mexico. Geographical location: 19° 29’ NL, 98° 53 WL and 2240 m. 

Two tomatoes (Solanum lycopersicom L.) crop cultivar "CID F1" were grown in 

hydroponic systems using volcanic sand (Tuff) as a substrate. Plants were 
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distributed with a density of 3.5 plants m-2. For the first experiment, tomato 

seeds were sown on 18 July 2015, and the plants were transplanted on 21 

August 2015, in a type chapel glasshouse with 8 x 8 m dimensions. The second 

experiment the seeds were sown on 24 March 2016 and transplanted on 24 

April 2016, in a plastic greenhouse with natural ventilation with dimensions of 8 x 

15 m. Both experiments were fertilized with Steiner nutrient solution (Steiner, 

1984). A HOBO weather station (Onset Computer Corporation) was installed 

inside of the greenhouses. Temperature and relative humidity were measured 

with an S-TMB-M006 model sensor placed at a height of 1.5 m. Global radiation 

was measured with an S-LIB-M003 sensor located at 3.5 m above the ground. 

Both sensors were connected to a data logger U-30-NRC model, and the data 

were recorded every minute, and subsequently the data were processed to 

obtain average data at hourly intervals. 

In each experiment, three plants were chosen randomly for the sampling of each 

ten days to measure dry matter, nitrogen uptake, and leaf area index. The plants 

were dried out during 72 h at 70 °C in an oven. Nitrogen was determined by the 

Kjeldahl method. The leaf area index was estimated by a nondestructive method 

which consisted in taking four plants randomly in order to get measurements of 

width and length of the plant's leaves and also the total leaf area and a plant 

canopy analyzer LAI-3100 (LI-COR, USA) was used. From the measurements, 

nonlinear regression models were fitted in order to estimate this variable. This 

due to the plants sampled during the measurement of the transpiration had to be 

kept alive until to end of the experimental phase. The crop transpiration was 

measured every minute by a weighing lysimeter located in a central row of the 

greenhouses. The device includes an electronic balance (scale capacity =120 

kg, resolution ±0.5 g equipped with a tray carrying four plants for both 

experiments. The weight loss measured was assumed to be equal to the crop 

transpiration. 

4.2.2 Model Description 
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The dynamic HortSyst model (Martinez et al., 2017) assumes that the crop have 

no water and nutrient limitations, and it simulates Photo-thermal time (𝑃𝑇𝐼, MJ d-

1), dry matter production (𝐷𝑀𝑃,  g m-2), Nitrogen uptake (𝑁𝑢𝑝,  g m-2), as the 

state variables besides the leaf area index (𝐿𝐴𝐼, m2 m-2) and crop transpiration 

(𝐸𝑇𝑐, kg m-2) as output variables. In Table 1 are listed the mathematical 

equations of the three-state variables and the two output variables. Figure 1 

shows the general structure of the model using a Forrester diagram. The model 

structure is based on VegSyst model developed by (Gallardo et al., 2011; 

Gallardo et al., 2016; Gallardo et al.,2014; Giménez et al., 2013). The input 

variables of the model are hourly measurements of air temperature (°C) Figure 

2, relative humidity (%) Figure 3, and integration of solar radiation (𝑊𝑚−2) 

Figure 4. The models with the light (radiation) use efficiency approach (Kang et 

al., 2008; Lemaire et al., 2008; De Reffye et al., 2009) which allows the 

calculation of daily dry matter production (∆𝐷𝑀𝑃) Eq. (8) as a function of the 

photosynthetically active radiation (PAR) Eq. (9), crop characteristics such as 

leaf area index (LAI) Eq. (10) and the radiation use efficiency parameter (RUE, g 

MJ-1) as has been proposed by several researchers (Shibu et al., 2010; Soltani 

and Sinclair, 2012). The fraction of light intercepted (𝑓𝑖−𝑃𝐴𝑅) formalism of light 

intercepted relies upon the leaf area index (𝐿𝐴𝐼), which is the total functioning 

leaf area for a unit surface area of ground covered by the plant population. The 

extinction coefficient (dimensionless 𝑘  parameter) is related to leaf size and leaf 

orientation; this assumption is usually robust and tolerates some shift for reality. 

Leaf area index (𝐿𝐴𝐼), was modelled as a function of Photo-thermal time (𝑃𝑇𝐼) 

using the Michaelis-Menten equation and is multiplied by the density of planting 

𝑑 to obtain the leaf area index(𝐿𝐴𝐼). For this purpose, it has calculated the 

normalized thermal time (𝑇𝑇, °C) with Eq. (6) and it is defined as the ratio of the 

growth rate under conditions of actual and optimum temperature conditions 

according to Dai et al. (2006).Then daily Photo-thermal time (∆𝑃𝑇𝐼) Eq. (5), is 

calculated as the product of normalized thermal time with the fraction of light 

intercepted( 𝑓𝑖−𝑃𝐴𝑅) and PAR radiation, then the accumulation of PTI is 

calculated as Eq. (1) (Xu et al., 2010). 



 

68 

For daily nitrogen uptake ∆𝑁𝑢𝑝, first the nitrogen content %𝑁 is calculated with 

the exponential model (Tei et al., 2002) eq. (11). And it is a function of the daily 

dry matter production (∆𝐷𝑀𝑃) and uptake nitrogen is simulated by Eq. (12). 

Then its accumulated value is given by eq. (3). Finally, the crop transpiration 

(𝐸𝑇𝑐) is computed hourly, with Global radiation, vapor pressure deficit, the 

fraction of light intercepted and leaf area index as shown in eq. (14). And it is 

accumulated with equation (4). 

Table 4.1. HortSyst model equations 

Variable Definition Equation Units 

𝑷𝑻𝑰 Photo-thermal  

time 

𝑃𝑇𝐼(𝑗 + 1) = 𝑃𝑇𝐼(𝑗) + ∆𝑃𝑇𝐼                                                                (1) 𝑀𝐽 𝑚−2 

𝑫𝑴𝑷 Dry matter 

production 

𝐷𝑀𝑃(𝑗 + 1) = 𝐷𝑀𝑃(𝑗) + ∆𝐷𝑀𝑃                                                          (2)   𝑔 𝑚−2 

𝑵𝒖𝒑 Nitrogen 

Uptake 

𝑁𝑢𝑝(𝑗 + 1) = 𝑁𝑢𝑝(𝑗) + ∆𝑁𝑢𝑝              (3)  

 

𝑔 𝑚−2 

𝑬𝑻𝒄 Daily crop 

transpiration  

𝐸𝑇𝑐(𝑗 + 1) = 𝐸𝑇𝑐(𝑗) + ∆𝐸𝑇𝑐                                                               (4)  𝑘𝑔 𝑚−2 

 

∆𝑷𝑻𝑰 

Daily photo -

thermal time  ∆𝑃𝑇𝐼(𝑗) = (∑𝑇𝑇

24

𝑖=1

(𝑖, 𝑗))𝑃𝐴𝑅(𝑗) × 𝑓𝑖−𝑃𝐴𝑅(𝑗)                                        (5) 

 

𝑀𝐽 𝑚−2 𝑑−1 

 

𝑻𝑻 

  

Normalized 

Thermal 

Time 

𝑇𝑇 =

{
 
 

 
 
0 (𝑇𝑎 < 𝑇𝑚𝑖𝑛)
(𝑇𝑎 − 𝑇𝑚𝑖𝑛)/(𝑇𝑜𝑏 − 𝑇𝑚𝑖𝑛) (𝑇𝑚𝑖𝑛 ≤ 𝑇𝑎 < 𝑇𝑜𝑏)

1 (𝑇𝑜𝑏 ≤ 𝑇𝑎 ≤ 𝑇𝑜𝑢)
(𝑇𝑚𝑎𝑥 − 𝑇𝑎)/(𝑇𝑚𝑎𝑥 − 𝑇𝑜𝑢) (𝑇𝑜𝑢 < 𝑇𝑎 ≤ 𝑇𝑚𝑎𝑥)

0 (𝑇𝑎 > 𝑇𝑚𝑎𝑥)

                    (6) 

 

[
𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛

𝑙𝑒𝑠𝑠
] 

 

 

𝑷𝑨𝑹 PAR  
gRjPAR  5.0)(                                                                                   (7) 𝑀𝐽 𝑚−2 

 

∆𝑫𝑴𝑷 

Daily dry 

matter 

production  

 

∆𝐷𝑀𝑃(𝑗) = 𝑅𝑈𝐸 × 𝑓𝑖−𝑃𝐴𝑅(𝑗) × 𝑃𝐴𝑅(𝑗)                                              (8) 

 

𝑔 𝑚−2 

𝒇𝒊−𝑷𝑨𝑹 Intercepted 

PAR fraction 

 

𝑓𝑖−𝑃𝐴𝑅 = 1 − exp (−𝑘 × 𝐿𝐴𝐼(𝑗))                                                           (9) 

[
𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛

𝑙𝑒𝑠𝑠
] 

 

𝑳𝑨𝑰(𝒋) Leaf Area 

Index 

 𝐿𝐴𝐼(𝑗) = [
𝑐1×∆𝑃𝑇𝐼(𝑗)

𝑐2×∆𝑃𝑇𝐼(𝑗)
] × 𝑑                                                                    (10) 𝑚2 𝑚−2 

%𝑵(𝒋) Nitrogen 

content 

 %𝑁(𝑗) = 𝑎 × (∆𝐷𝑀𝑃)−𝑏                                                                    (11)  [
𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛

𝑙𝑒𝑠𝑠
] 

∆𝑵𝒖𝒑 Daily 

Nitrogen 

Uptake  

𝑁𝑢𝑝(𝑗) = (%𝑁(𝑗)/100) × 𝐷𝑀𝑃(𝑗)                                                     (12) 𝑔 𝑚−2 
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𝑬𝑻𝒄(𝒊) Hourly 

Transpiration  

𝐸𝑇𝑐(𝑖) = 𝐴 × (1 − exp (−𝑘 × 𝐿𝐴𝐼(𝑗))) × 𝑅𝑔(𝑖) + 𝐿𝐴𝐼(𝐷𝑃𝑉)𝐵(𝑑,𝑛)          (13)                        𝑘𝑔 𝑚−2 ℎ−1 

𝑬𝑻𝒄(𝒋) Daily 

Evapotranspir

ation  

∆𝐸𝑇𝑐 =∑𝐸𝑇𝑐(𝑖)

24

𝑖=1

                                                                                      (14) 
 

𝑘𝑔 𝑚−2 

 

 

Figure 4.1. Forrester diagram for the HortSyst crop Model with three state 
variables 

4.2.3 Monte Carlo uncertainty Method 

According to Refsgaard et al. (2007), Monte Carlo simulation is a statistical 

technique for stochastic model calculations and analysis of error propagation in 

calculations. Its purpose is to trace out the structure of the distributions of the 

model output. In its simplest form, these distributions are mapped by calculating 

the deterministic results (realizations) for a large number of unbiased random 

draws (Matott et al., 2009) from the individual distribution function of input data 

and parameters of the model. As in random Monte Carlo sampling, pre-existing 

information about correlations between input variables can be incorporated. 

Monte Carlo analysis requires the analysis to specify probability distributions of 

all inputs and parameters and the correlations between them. Both probability 

distributions and correlations are usually poorly known. Ignoring correlations and 
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covariance in input distributions may lead to substantial under or over-estimation 

of uncertainty in the model outcome. Advanced sampling methods have been 

designed such as Latin Hypercube sampling (LHS) methods to reduce the 

required number of model runs needed to get sufficient information about the 

distribution on the outcome (mainly to save computational time). The stratified 

sampling (Matott et al., 2009) divides a given input distribution into intervals. For 

efficient sampling, intervals, typically are constructed so that each has an equal 

probability of occurrence. 

According to Monod et al. ( 2006), an uncertainty analysis consists of the 

following steps. 

Step 1. Specification of probability distribution functions of the input factors, 

since no additional information was available, in a first approach, a uniform 

probability density function was selected for each of one of the HortSyst model’s 

parameters the lower and upper limits of the uncertainty intervals were defined 

regarding a 10% and 20% of the parameter variation around its nominal value 

(Table 2) which was taken from Gallardo et al. ( 2014), Heuvelink, (1999), 

Medrano et al. (2005), and Medrano et al. (2008) for the season spring-summer. 

Step 2. Value generation for input factors. The input factors were the HortSyst 

model’s parameters (Table 2). Latin Hypercube sampling was applied to 

generate N=10,000 values for each one of the parameters analyzed using a 

subroutine that was programmed in the Matlab programming environment.  

Table 4.2. Description of the HortSyst parameters with 10% of variation of their 
nominal value, used for uncertainty simulation under experimental 
condition for spring and summer seasons. 

No Parameter Symbol Nominal 

Value 

Lower 

Limit 

Upper 

Limit 

1 Top upper temperature (°C) Tmax 35.00 31.50 38.50 

2 Top bottom temperature (°C) Tmin 10.00 9.00 11.00 

3 Optimum minimum temperature (°C) Tob 17.00 15.30 18.70 

4 Optimum maximum temperature (°C) Tou 24.00 21.6 26.40 

5 Radiation Use Efficiency (g MJ-1) RUE 3.10 2.79 3.41 

6 Extinction coefficient (--) k 0.70 0.63 0.77 
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7 N concentration in the dry biomass at the 

end of the exponential growth period (g m-2) 

 

a 

 

6.66 

 

5.99 

 

7.33 

8 Is the slope of the relationship (--) b -0.19 -0.21 -0.17 

8 Slope of the curve (m-2) c1 3.08 2.77 3.39 

10 Intersection coefficient (--) c2 175.64 158.08 193.20 

11 Radiative coefficient (--) A 0.24 0.22 0.26 

12 Aerodynamic coefficient during day (W m-2 

kPa-1)  

Bd 37.60 33.84 41.36 

13 Aerodynamic coefficient during night (W m-2 

kPa-1 

Bn 26 23.40 28.60 

Step 3. Calculation of the model outputs for each scenario. Using 10000 

scenarios generated in step 2, the simulation was performed with the HortSyst 

model, the input variables (Figures 2-4) along with the sampling values of the 

thirteen parameters were used to calculate the predictions of the model. 

Step 4. Distribution analysis of output variables. The minimum value, maximum 

value, mean value, variation coefficient (CV), skewness, and kurtosis statistics 

were calculated, as well as the histograms and the curves of the outputs for PTI, 

LAI, DMP, Nup and ETc predicted by the HortSyst model. 

4.2.4 The Generalized Likelihood Uncertainty Estimation (GLUE) 

Uncertainty method 

Regarding Bayesian methods, the Generalized Likelihood Uncertainty 

Estimation (GLUE) technique is an innovative uncertainty procedure (Beven and 

Binley, 1992, 2014; Beven and Freer, 2001; Makowski et al., 2002; Stedinger et 

al., 2008) used with environmental simulation models. GLUE popularity can be 

attributed to its simplicity and its applicability to nonlinear systems. This method 

is based on Monte Carlo simulation, in which parameter sets may be sampled 

from some probability distribution function (PDF). The most used PDF is a 

uniform distribution. Each parameter set is used to produce a model output; the 

acceptability of each model run is then assessed using a goodness-of-fit 

criterion which compares the predicted to observed values over some calibration 

period. Several likelihood functions can be used such as RMSE, the inverse 
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error variance, efficiency index, etc. As part of the GLUE procedure. GLUE can 

be used both as a kind of calibration method or as an uncertainty propagation 

method. It is based on the concept of equifinality and can be seen as a method 

having similarities in approach with three of the above fourteen methods: 

Inverse modeling (parameter estimation), Monte Carlo analysis and multiple 

model simulations (Refsgaard et al., 2007). To evaluate the performance of the 

HortSyst model with this approach were run 2000 simulations using 10% and 

20% of the variation of the nominal values of the thirteen parameters, with RUE 

of 3.1 (Jones et al., 1991) for season autumn-winter using Latin Hypercube 

Sample (LHS). To carry out the simulation of uncertainty analysis was used a 

Matlab toolbox for the application of global sensitivity analysis, called SAFE 

(Sensitivity Analysis for Everybody) that also is used for uncertainty analysis, the 

toolbox offers a number of visual tools including scatterplot, this toolbox is freely 

available from the authors for non-commercial research and educational uses 

(Pianosi, Sarrazin, & Wagener, 2015).  

 

Figure 4.2 Daily averaged values of the global radiation measured inside of the 
greenhouses located in Chapingo, Mexico during autumn-winter, 
2015, and spring-summer, 2016. 

 



 

73 

 

Figure 4.3 Daily averaged values of the air temperature measured inside of the 
greenhouses, located in Chapingo, Mexico, during autumn-winter, 
2015, and spring-summer, 2016. 

 

 

Figure 4.4 Daily averaged values of the relative Humidity measured inside of the 
greenhouses located in Chapingo, Mexico, during autumn-winter, 
2015, and Spring-Summer, 2016. 

 

4.3 Results 

4.3.1 Model Output Uncertainty with Monte Carlo method 
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The HortSyst model predictions coming from 10,000 scenarios of simulation with 

10% of the variation of the parameter values using LHS are shown for PTI in 

Figure 5a) and for LAI in Figure 5c). The measured values are included only in 

case of LAI variable because PTI values are computed during the simulations. 

The corresponding histograms of both variables (Figure 5b and Figure 5d) were 

also calculated using the total number of 10,000 simulations. These results were 

obtained using the input variables (global solar radiation, temperature and 

relative humidity) over the spring-summer cultivation period. 

 

 

Figure 4.5 Output variables predictions by applying the tomato growth model 
HortSyst. a) and c) output simulation curves produced by the model 
for PTI and LAI, b) and d) histogram corresponding to PTI and LAI 
with 10% of parameters variation using LHS during the season 
spring-summer. 

The DMP and Nup predicted by HortSyst model are shown in Figure 6a) and 6c)   

coming from 10,000 scenarios of simulation of variation of the parameter values 

using LHS. The measured values of both variables are plotted for reference. The 
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corresponding histograms of both variables were also calculated and they are 

showed in Figure 6b) and 6d) over the spring-summer cultivation period. 

 

Figure 4.6 Output variables predictions by applying the tomato growth model 
HortSyst, a) and c) output simulation curves produced by the model 
for DMP and Nup, b) and d) histogram corresponding to DMP and 
Nup, with 10% of parameters variation using LHS during the season 
spring-summer. 

The HortSyst model predictions corresponding to crop transpiration from 10,000 

scenarios of parameter values using LHS are shown in Figure 7a). The 

measured values are plotted for reference as well. The corresponding histogram 

(Figure 7b) was also calculated using the total number of simulations (10,000). 

These results were obtained using the input variables over the spring-summer 

season. 
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Figure 4.7 Output variables resulted from applying the tomato growth model 
HortSyst, for the crop transpiration (ETc); a) output v simulation 
curve produced, b) histogram corresponding to ETc respectively, 
with 10% of parameters variation using LHS sampling during the 
spring-summer season. 

 

The output uncertainties were quantified by using the statistics; minimum value, 

maximum value, mean value, variation coefficient (CV), skewness and kurtosis 

as a result of the simulation with a Monte Carlo method. These statistical values 

using LHS are summarized in Table 3. The values of model parameters were 

varied by 10% and 20% around their nominal values; in general, the uncertainty 

of the model predictions was increased with a shorter uncertainty intervals as 

expected. The CV values of all variables were greater in the case of 20% than 

10% of the uncertainty variation. For all the predicted variables the CV was 

lesser than 15% which means that the model is highly reliable. These were 

reflected in a change of the reduction of average values for all output variables 

of the model. Those predicted values were compared with the measured data at 

the end of the season of 6.86 m2 m-2 for LAI, 1304 g m-2 for DMP, 27.4 g m-2 for 

Nup and 291.69 kg m-2 for ETc, the errors were -1.7%, -1.7%, 1.6% and -0.3%, 

respectively, this mean that the average values of LAI and DMP predicted were 

slightly over-estimated and the Nup were under estimated respect the observed 

data, the predicted average values of ETc was close to the measured these 

results were when the parameters were varied 10% around their nominal values.  

When the parameters were varied 20%, the errors were for LAI (0.1%), DMP 

(0.7%), Nup (3.2%) and ETc (1.5%) all the average values predicted by the 
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model were under estimated compared with the measured data, the average 

values of LAI and DMP were closer to the measured values, the error of Nup 

average value moved away twice with the variation of the parameters from 10% 

to 20%, in case of ETc the average value were more underestimated when the 

uncertainty were increased to the 20%.The differences between maximum and 

minimum values were for PTI, 262.6 MJ m-2, LAI, 4.73 m2 m-2, DMP, 1006.34 g 

m-2, Nup, 23.65 g m-2 ,and ETc, 301.07 kg m-2 for 10% variation of the 

parameters and 492.9 MJ m-2, 10.22 m2 m-2, 1900.3 g m-2, 50.7 g m-2 and 607.2 

kg m-2 , respectively, for 20% of variation, this show that the intervals of the 

predicted values increased more than twice with the varying of 20%. The 

uncertainty of the model predictions increases accordingly to the increase of 

uncertainty generated in the parameters around their nominal values. It is 

observed in the large difference values of all the predicted variables using 20% 

of parameters' variation respect to 10%.  

Table 4.3. Statistics calculated for variables predicted by the HortSyst model at 
the end of the cultivation period, using 10000 samples with 
variation of 10% and 20% of the nominal value of the parameters 
obtained by Latin Hypercube sampling of thirteen model´s 
parameters using a uniform probability function. 

Statistics PTI LAI DMP Nup ETc 

 10% 20% 10% 20% 10% 20% 10% 20% 10% 20% 

Minimum 190.34 69.19 4.52 1.93 778.74 332.58 16.95 8.24 154.88 52.01 

Maximum 453.15 562.16 9.25 12.15 1785.08 2232.96 40.60 58.94 455.95 659.22 

Mean 324.29 314.35 6.98 6.85 1326.04 1294.34 26.97 26.53 292.44 287.26 

Variation 

coefficient 

12.28 25.05 10.67 22.11 11.09 23.01 12.78 25.99 14.47 29.47 

Skewness 0.10 0.18 0.08 0.18 0.11 0.19 0.28 0.61 0.21 0.46 

Kurtosis 2.70 2.65 2.61 2.66 2.64 2.65 2.83 3.39 2.80 3.11 

The skewness values were positive for all the variables which means that data 

are more spread out to the right of the distribution, which is observed in 

corresponding histograms (Figure 5b, Figure 5d, Figure 6b, Figure 6d, Figure 7b 

and Figure 7d ). All the skewness values are very close to zero, which means 

that the distributions are similar to a normal distribution. The last observation is 

consistent with the Kurtosis values calculated for all the model outputs, which 

turned out to be closed to 3.0 that is the expected value of a normal distribution. 
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4.3.2 Model Output Uncertainty with GLUE method 

The output uncertainties for PTI, LAI, DMP, Nup, and ETc were computed by the 

95% confidence interval using the generalized likelihood uncertainty estimation 

(GLUE) Method of their accumulative distributions using 2000 simulations using 

uniform probability distributions and LHS and the RMSE as a likelihood function. 

Figures (8 and 9) show the simulated with 95% confidence interval limits around 

the value average. That is approximated as the difference between 2.5th and 

97.5th percentile under the cumulative distribution curve of the output for 10% 

and 20% of the parameter variation respectively. In addition the measured 

values of LAI, DMP, Nup, and ETc were included during the analysis. With 10% 

variation of the parameters, it was found less uncertainty for all output variables 

(Figure 8). However, to use the model to make predictions it is not enough 

varying 10% of the parameter values. It is advisable to analyze the outputs by 

varying 20% to be able to rely on the predictions of the model (Figure 9). From 

the simulation of the model with GLUE method, also were obtained the 

scatterplot of the parameters affecting on the output variables (Figure 10-12). As 

it was mentioned, this procedure could give an estimation of the value of the 

parameters calibrated, which minimized the error between simulated and 

measured data (RMSE). Best values for RUE parameter were between 4.0 – 5.5 

MJ m-2 (Figure 6). The scatterplot for LAI parameters the best values of 

parameter c1 (2.5 - 3.3 m2) and c2 (60 – 85) were shown in Figure 11a and 

Figure 11b. Meanwhile, Figure 11c and Figure 11d show the parameters for 

Nup; a (6.0 – 7.5), b (-0.2 – 0.15). Nevertheless, the ETc simulations could not 

find a clear pattern of its calibrated parameter associated with small RMSE 

values. Besides, of the scatterplot of the parameters of each outputs, the Figure 

12 (a, b, c d) show the planting density (d) associated with each of outputs, and 

clearly the good performance of the model was found between 3 - 4 plants m-2 

of crop density specifically for LAI and ETc. So plant density played an important 

role in the performance of the model it had major effect on LAI and ETc. With a 

density higher that 3 plants m-2 it was observed better performance for Nup and 
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DMP, according to Figure (12) with density less to 3 plants m-2 the model could 

not have good performance.   

 

Figure 4.8 Simulation (2000) of the LAI (a), DMP (b), Nup (c) and ETc (d) 
obtained by HortSyst model by using the GLUE method with 95% of 
confidence interval with 10% of variation of the parameters, using 
LHS during the season autumn-winter. 
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Figure 4.9 Simulation (2000) of the LAI (a), DMP (b), Nup (c) and ETc (d) 
obtained by HortSyst model by using the GLUE method with 95% of 
confidence interval with 20% of variation of the parameters, using 
LHS during the season autumn-winter. 

 

 

Figure 4.10 The scatter plot of the parameter RUE respects RMSE of DMP 
variable with 2000 simulations. 
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Figure 4.11 Scatter plots of the parameter c1, c2 respect RMSE of LAI and a, b 
respect RMSE of Nup variable with 2000 simulations. 



 

82 

 

Figure 4.12 Scatter plots of the parameter d respect RMSE of LAI, DMP, Nup, 
ETc variable with 2000 simulations. 

4.4 Discussion 

In the simulation with 10% of uncertainty in the model parameters, the greatest 

variability using the coefficient of variation (CV) were for the ETc (14.47%), 

followed by Nup (12.78%), PTI (12.28%), DMP (11.09%), and LAI (10.67%) with 

the lowest variability. A similar performance was observed by 20% of variation of 

the parameters where the corresponding CV values were for ETc (29.47%) > 

Nup (25.99%) > PTI (25.05%) > DMP (23.01%) >LAI (22.11%). The CV values 

for DMP were slightly higher than those reported by López et al. (2012) who 

evaluated the NICOLET model for lettuce in the greenhouse. However, these 

results were different and better than those reported for LINTUL and SUCROS 

87 (Monod et al., 2006), where the values of these statistics were found about 

70% and 150% for some variables predicted by those models and less than the 

range from 19% to 33% found by Dzotsi et al. (2013) for simple SALUS model. 
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Even considering the results that were obtained by variation of 20% of the 

parameters, the coefficients of variation in the values for each of output were still 

lesser than those reported by Pathak et al. (2012) who found the CV values for 

model predictions of LAI ranged between 47 and 56% and similarly for 

aboveground biomass component had values as high as 53%. In case of ETc 

variable Baroni and Tarantola (2014) found values relatively low of the 

uncertainty estimation with mean value in range of 280±45 mm, this was closer 

that the values found in this research.  

According to the Kurtosis calculated for all the predicted outcomes, it resulted 

around to three (Table 3). Thus, the distributions of all the outputs had a normal 

distribution. This could be confirmed by Figure 5b, 5d, 6b, 6d, and 7b). The 

Skewness of all predictions of the model turned out to be positive but close to 

zero (Table 3) which means mean that the data were more spread out slightly to 

the right tail of the distribution were slightly longer. This behavior could be seen 

in the histograms (Figure 5b, 5d, 6b, 6d, and 7b). The distributions of all the 

variables were symmetric because the Skewness values were close to zero. 

This symmetry was also found by López et al. (2012) for total biomass of lettuce 

with the exception of N uptake that tend slightly to an asymmetric pattern, López 

et al. (2012) found greater asymmetry for nitrate content for NICOLET model.  

Table 2 showed that when the nominal value of the parameters was 

varied from 20% to 10%, which mean decreasing the uncertainty that was 

incorporated into the model, the coefficient of variation (uncertainty) of the 

predicted PTI, LAI, DMP, Nup, and ETc was reduced roughly 50%. In both 

cases LAI and DMP were predicted more accurately than PTI, Nup, and ETc. 

Taking into account the error of the mean value of simulation against the 

measuring data for output variables, it was evident that the model had a good 

quality of prediction, even though the parameter values were varied to 20%.  

The estimation of the model outputs uncertainty using GLUE procedure 

improved the model performance based on sets of the parameters. According to 

Pathak et al. (2012), this procedure and Monte Carlo method estimated the 

uncertainty under the assumption that the parameters were independent. It was 
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important consider that the model output uncertainties depend only on the 

uncertainty associated with the model´s parameters. Other sources of 

uncertainty as mentioned by Gal et al. (2014) were not considered. However, 

Gal et al. (2014) agree that the unknown uncertainty of the model associated 

with the uncertainty of parameters under different climatic conditions (as a 

certain parameter could vary from one environmental condition to another) an 

uncertainty analysis on the model could be used to assure that the model 

uncertainty does not limit their effectiveness as a management tool, in order to 

reach the desired level of confidence in the results and often robust information 

for decision-making (Zhao et al., 2014). 

4.5 Conclusions 

The results obtained in this study indicate that the uncertainty analysis using 

Monte Carlo and the GLUE procedure, these methods can help us to quantify 

the uncertainties of the model predictions when the model intends to be applied 

for recommendations for the management of production systems. Because of 

the low uncertainty associated to the output variables, the HortSyst model is a 

reliable model that could be used for decision support system for management 

of the irrigation scheduling and nitrogen supply in greenhouse tomatoes under 

soilless culture. This has also demonstrated an efficient estimation of the 

uncertainty in the model outcomes by the widely accepted GLUE procedure. 

This methodology could be useful in the estimation of the uncertainty and could 

asses the suitability for purpose of model parameter estimation, and it allowed to 

estimate the amount of variability in model predictions with coupling of the 

measured data. For uncertainty analysis, it is not enough quantifying the 

uncertainty of the model only considering the uncertainty associated with the 

parameters, as it was mentioned there are many sources of uncertainty. We 

should consider other model uncertainty sources, to have a complete analysis 

and measure the correlation between parameter but this is another type of 

analysis which do not correspond to the objectives set in this research. 

 



 

85 

4.6 Reference 

Baroni, G., & Tarantola, S. (2014). A General Probabilistic Framework for 
uncertainty and global sensitivity analysis of deterministic models: A 
hydrological case study. Environmental Modelling and Software, 51, 26–
34. https://doi.org/10.1016/j.envsoft.2013.09.022 

Bert, F. E., Laciana, C. E., Podestá, G. P., Satorre, E. H., & Menéndez, A. N. 
(2007). Sensitivity of CERES-Maize simulated yields to uncertainty in soil 
properties and daily solar radiation. Agricultural Systems, 94(2), 141–150. 
https://doi.org/10.1016/j.agsy.2006.08.003 

Beven, K., & Binley, A. (1992). The future of distributed models: Model 
calibration and uncertainty prediction. Hydrological Processes, 6(3), 279–
298. https://doi.org/10.1002/hyp.3360060305 

Beven, K., & Binley, A. (2014). GLUE: 20 years on. Hydrological Processes, 
28(24), 5897–5918. https://doi.org/10.1002/hyp.10082 

Beven, K., & Freer, J. (2001). Equifinality, data assimilation, and uncertainty 
estimation in mechanistic modelling of complex environmental systems 
using the GLUE methodology. Journal of Hydrology, 249(1–4), 11–29. 
https://doi.org/10.1016/S0022-1694(01)00421-8 

Confalonieri, R., Bregaglio, S., & Acutis, M. (2016). Quantifying uncertainty in 
crop model predictions due to the uncertainty in the observations used for 
calibration. Ecological Modelling, 328, 72–77. 
https://doi.org/10.1016/j.ecolmodel.2016.02.013 

Cooman, A., & Schrevens, E. (2006). A Monte Carlo Approach for estimating the 
Uncertainty of Predictions with the Tomato Plant Growth Model, Tomgro. 
Biosystems Engineering, 94(4), 517–524. 
https://doi.org/http://dx.doi.org/10.1016/j.biosystemseng.2006.05.005 

Dai, J., Luo, W., Li, Y., Yuan, C., Chen, Y., & Ni, J. (2006). A simple model for 
prediction of biomass production and yield of three greenhouse crops. In 
III International Symposium on Models for Plant Growth, Environmental 
Control and Farm Management in Protected Cultivation 718 (pp. 81–88). 

Dzotsi, K. A., Basso, B., & Jones, J. W. (2013). Development, uncertainty and 
sensitivity analysis of the simple SALUS crop model in DSSAT. 
Ecological Modelling, 260, 62–76. 
https://doi.org/10.1016/j.ecolmodel.2013.03.017 

Gal, G., Makler-Pick, V., & Shachar, N. (2014). Dealing with uncertainty in 
ecosystem model scenarios: Application of the single-model ensemble 
approach. Environmental Modelling & Software, 61, 360–370. 
https://doi.org/http://dx.doi.org/10.1016/j.envsoft.2014.05.015 

Gallardo, M., Fern??ndez, M. D., Gimenez, C., Padilla, F. M., & Thompson, R. 
B. (2016). Revised VegSyst model to calculate dry matter production, 
critical N uptake and ETc of several vegetable species grown in 
Mediterranean greenhouses. Agricultural Systems, 146, 30–43. 



 

86 

https://doi.org/10.1016/j.agsy.2016.03.014 

Gallardo, M., Giménez, C., Martínez-Gaitán, C., Stöckle, C. O., Thompson, R. 
B., & Granados, M. R. (2011). Evaluation of the VegSyst model with 
muskmelon to simulate crop growth, nitrogen uptake and 
evapotranspiration. Agricultural Water Management, 101(1), 107–117. 
https://doi.org/10.1016/j.agwat.2011.09.008 

Gallardo, M., Thompson, R. B., Giménez, C., Padilla, F. M., & Stöckle, C. O. 
(2014). Prototype decision support system based on the VegSyst 
simulation model to calculate crop N and water requirements for tomato 
under plastic cover. Irrigation Science, 32(3), 237–253. 
https://doi.org/10.1007/s00271-014-0427-3 

Giménez, C., Gallardo, M., Martínez-Gaitán, C., Stöckle, C. O., Thompson, R. 
B., & Granados, M. R. (2013). VegSyst, a simulation model of daily crop 
growth, nitrogen uptake and evapotranspiration for pepper crops for use 
in an on-farm decision support system. Irrigation Science, 31(3), 465–
477. https://doi.org/10.1007/s00271-011-0312-2 

Granados, M. R., Thompson, R. B., Fernández, M. D., Martínez-Gaitán, C., & 
Gallardo, M. (2013). Prescriptive-corrective nitrogen and irrigation 
management of fertigated and drip-irrigated vegetable crops using 
modeling and monitoring approaches. Agricultural Water Management, 
119, 121–134. https://doi.org/10.1016/j.agwat.2012.12.014 

Helton, J. C., Davis, F. J., & Johnson, J. D. (2005). A comparison of uncertainty 
and sensitivity analysis results obtained with random and Latin hypercube 
sampling. Reliability Engineering & System Safety, 89(3), 305–330. 
https://doi.org/10.1016/j.ress.2004.09.006 

Heuvelink, E. (1999). Evaluation of a Dynamic Simulation Model for Tomato 
Crop Growth and Development. Annals of Botany, 83, 413–422. 
https://doi.org/10.1006/anbo.1998.0832 

Iizumi, T., Yokozawa, M., & Nishimori, M. (2009). Parameter estimation and 
uncertainty analysis of a large-scale crop model for paddy rice: 
Application of a Bayesian approach. Agricultural and Forest Meteorology, 
149(2), 333–348. https://doi.org/10.1016/j.agrformet.2008.08.015 

Jones, J. W., Dayan, E., Allen, L. H., Keulen, H. Van, & Challa, H. (1991). A 
dynamic tomato growth and yield model ( t o m g r o ). AmericanSociety 
of Agricultural Engineers, 34(April), 663–672. 
https://doi.org/10.13031/2013.31715 

Kang, M. Z., Cournède, P. H., de Reffye, P., Auclair, D., & Hu, B. G. (2008). 
Analytical study of a stochastic plant growth model: Application to the 
GreenLab model. Mathematics and Computers in Simulation, 78(1), 57–
75. https://doi.org/10.1016/j.matcom.2007.06.003 

Lemaire, S., Maupas, F., Cournède, P.-H., & De Reffye, P. (2008). A 
morphogenetic crop model for sugar-beet (Beta vulgaris L.). International 



 

87 

Symposium on Crop Modeling and Decision Support ISCMDS, 5, 19–22. 
https://doi.org/10.1007/978-3-642-01132-0_14 

Li, Y., Kinzelbach, W., Zhou, J., Cheng, G. D., & Li, X. (2012). Modelling 
irrigated maize with a combination of coupled-model simulation and 
uncertainty analysis, in the northwest of China. Hydrology and Earth 
System Sciences, 16(5), 1465–1480. https://doi.org/10.5194/hess-16-
1465-2012 

López-Cruz, I. L., Salazar-Moreno, R., Rojano-Aguilar, A., & Ruiz-García, A. 
(2012). Análisis de sensibilidad global de un modelo de lechugas 
(Lactuca sativa L.) cultivadas en invernadero. Agrociencia, 46(4), 383–
397. 

Makowski, D., Wallach, D., & Tremblay, M. (2002). Using a Bayesian approach 
to parameter estimation; comparison of the GLUE and MCMC methods. 
Agronomie, 22, 191–203. https://doi.org/10.1051/agro:2002007 

Matott, L. S., Babendreier, J. E., & Purucker, S. T. (2009). Evaluating 
uncertainty in integrated environmental models: A review of concepts and 
tools. Water Resources Research, 45(6). 
https://doi.org/10.1029/2008WR007301 

Martinez R. A., López C.I.L., Ruiz G. A., Pineda P. J. (2017) Hortsyst: a dynamic 
model to predict growth, nitrogen uptake, and transpiration of greenhouse 
tomatoes. *Submited to Plant and Soil Journal.  

Medrano, E., Alonso, F. J., Cruz Sánchez-Guerrero, M., & Lorenzo, P. (2008). 
Incorporation of a model to predict crop transpiration in a commercial 
irrigation equipment as a control method for water supply to soilless 
horticultural crops. In Acta Horticulturae (Vol. 801 PART 2, pp. 1325–
1330). 

Medrano, E., Lorenzo, P., Sánchez-Guerrero, M. C., & Montero, J. I. (2005). 
Evaluation and modelling of greenhouse cucumber-crop transpiration 
under high and low radiation conditions. Scientia Horticulturae, 105(2), 
163–175. https://doi.org/10.1016/j.scienta.2005.01.024 

Monod, H., Naud, C., & Makowski, D. (2006). Uncertainty and sensitivity 
analysis for crop models. Working with Dynamic Crop Models: Evaluation, 
Analysis, Parameterization, and Applications, 4, 55–100. 

Pathak, T. B., Jones, J. W., Fraisse, C. W., Wright, D., & Hoogenboom, G. 
(2012). Uncertainty analysis and parameter estimation for the CSM-
CROPGRO-cotton model. Agronomy Journal, 104(5), 1363–1373. 
https://doi.org/10.2134/agronj2011.0349 

Pianosi, F., Sarrazin, F., & Wagener, T. (2015). A Matlab toolbox for Global 
Sensitivity Analysis. Environmental Modelling & Software (Vol. 70). 
https://doi.org/10.1016/j.envsoft.2015.04.009 

De Reffye, P., Heuvelink, E., Guo, Y., Hu, B. G., & Zhang, B. G. (2009). 
Coupling process-based models and plant architectural models: A key 



 

88 

issue for simulating crop production. Crop Modeling and Decision 
Support, 4, 130–147. 

Refsgaard, C. J., Henriksen, H. J., Harrar, W. G., Scholten, H., & Kassahun, A. 
(2005). Quality assurance in model based water management – review of 
existing practice and outline of new approaches. Environmental Modelling 
and Software, 20(2005), 1201–1215. 

Refsgaard, J. C., van der Sluijs, J. P., Højberg, A. L., & Vanrolleghem, P. A. 
(2007). Uncertainty in the environmental modelling process - A framework 
and guidance. Environmental Modelling and Software, 22(11), 1543–
1556. https://doi.org/10.1016/j.envsoft.2007.02.004 

Shibu, M. E., Leffelaar, P. A., van Keulen, H., & Aggarwal, P. K. (2010). 
LINTUL3, a simulation model for nitrogen-limited situations: Application to 
rice. European Journal of Agronomy, 32(4), 255–271. 
https://doi.org/10.1016/j.eja.2010.01.003 

Soltani, A. Sinclair, T. R. (2012). Modeling physiology of crop development, 
growth and yield. Growth and Yield. CABI publication. 322p. 
https://doi.org/10.1079/9781845939700.0102 

Stedinger, J. R., Vogel, R. M., Lee, S. U., & Batchelder, R. (2008). Appraisal of 
the generalized likelihood uncertainty estimation (GLUE) method. Water 
Resources Research, 44(12). https://doi.org/10.1029/2008WR006822 

Steiner, A. A. (1984). The universal nutrient solution. In 6. International 
Congress on Soilless Culture, Lunteren (Netherlands), 29 Apr-5 May 
1984. ISOSC. 

Tei, F., Benincasa, P., & Guiducci, M. (2002). Effect of n availability on growth, n 
uptake, light interception and photosynthetic activity in processing tomato. 
In Acta Horticulturae (pp. 209–216). International Society for Horticultural 
Science (ISHS), Leuven, Belgium. 
https://doi.org/10.17660/ActaHortic.2002.571.25 

Uusitalo, L., Lehikoinen, A., Helle, I., & Myrberg, K. (2015). An overview of 
methods to evaluate uncertainty of deterministic models in decision 
support. Environmental Modelling and Software. 
https://doi.org/10.1016/j.envsoft.2014.09.017 

Valdés-Gómez, H., Gary, C., Brisson, N., & Matus, F. (2014). Modelling 
indeterminate development, dry matter partitioning and the effect of 
nitrogen supply in tomato with the generic STICS crop-soil model. 
Scientia Horticulturae, 175, 44–56. 
https://doi.org/10.1016/j.scienta.2014.05.030 

Walker, W. E., Harremoes, P., Rotmans, J., van der Sluijs, J. P., van Asselt, M. 
B. A., Janssen, P., & von Krauss, M. P. K. (2003). Defining uncertainty: A 
conceptual basis for uncertainty management in model-based decision 
support. Integrated Assessment, 4(1), 5–17. 
https://doi.org/10.1076/iaij.4.1.5.16466 



 

89 

Wallach, D., Makowski, D., Jones, J. W., & Brun, F. (2014). Working with 
Dynamic Crop Models. Working with Dynamic Crop Models. 
https://doi.org/10.1016/B978-0-12-397008-4.00008-3 

Xu, R., Dai, J., Luo, W., Yin, X., Li, Y., Tai, X., … Diao, M. (2010). A 
photothermal model of leaf area index for greenhouse crops. Agricultural 
and Forest Meteorology, 150(4), 541–552. 
https://doi.org/10.1016/j.agrformet.2010.01.019 

Zhao, G., Bryan, B. A., & Song, X. (2014). Sensitivity and uncertainty analysis of 
the APSIM-wheat model: Interactions between cultivar, environmental, 
and management parameters. Ecological Modelling, 279, 1–11. 
https://doi.org/10.1016/j.ecolmodel.2014.02.003 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

90 

5. UNCERTAINTY ANALYSIS OF MODIFIED VEGSYST 
MODEL APPLIED TO A SOILLESS CULTURE TOMATO 

CROP 
A. Martinez-Ruiz1,1, I.L. López-Cruz 1, A. Ruiz-García1, J. Pineda-Pineda2, and A. Ramírez-

Arias1 

1Agricultural Engineering Graduate Program, University of Chapingo, Chapingo, Mexico; 2Soils 

Dept., University of Chapingo, Chapingo, Mexico (accepted in Acta Horticulturae) 

Abstract 

Over the last decades, the soilless culture technique has rapidly progressed in 

several developed countries linked to crop growth control environment and 

automation. Several crop growth models have been developed for decision 

support systems. Thus it is important to quantify the uncertainty associated to 

the predicted variables of these models previously to their application.  An 

uncertainty analysis aims to know quantitatively the variability of model 

components for a specific situation and the derivation of an uncertainty 

distribution for each state variable and model output. Recently, the VegSyst 

model was developed to assist the Nitrogen (N) supply and irrigation 

management for some horticultural crops. The basic input data are 

measurements of air temperature, relative humidity, and solar radiation which 

are climatic data that are commonly measured, by growers, in the greenhouse. 

The model was developed assuming non-limiting conditions of water and N use. 

The aim of this research was to modify the VegSyst model including a leaf area 

index (LAI) sub-model, in order to improve the prediction of dry matter 

production (DMP), and N uptake (Nup) for a soilless culture using plastic bags 

filled with “tezontle” (volcanic sand) as substrate. LAI was modeled using 

accumulated normalized thermal time and photosynthetically active radiation. An 

experiment with a tomato crop was carried out during the autumn-winter 2015 in 

a greenhouse located at University of Chapingo, Mexico.  The collected data 

were used to carry out an uncertainty analysis in which the inputs were the 

model parameters and the outputs were the predicted DMP, LAI, and crop N 
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content. Probability Density Functions were defined for each model parameter to 

calculate the corresponding statistics and histograms of the model outputs. Also 

the Generalized Likelihood Uncertainty Estimation (GLUE) Bayesian method 

was used. Results showed that LAI can be predicted better by the model than 

DMP and Nup. 

Keywords: Mineral nutrition, Simulation model, Decision Support System, 

Monte Carlo, Bayesian method  

5.1 Introduction 
 

Over the last decades, the soilless culture technique has rapidly progressed in 

several developed countries linked to control environment and automation. 

Several crop growth models have been developed for decision support systems, 

thus it is important to estimate the uncertainty associated to the predicted 

variables of these models previously to their application.   

The identification and quantification of uncertainty is recognized as an essential 

component for both model development and application. In an uncertainty study, 

we need to know how much uncertainty there is in the model output and where 

the uncertainty comes from. Thus an uncertainty analysis focuses in quantifying 

the amount of uncertainty in the model output can be connected to different 

sources of uncertainty in the model inputs (Helton et al., 2005; Saltelli et al., 

2004). More specifically, an uncertainty analysis aims to know quantitatively the 

variability of model components for a specific situation and the derivation of an 

uncertainty distribution for each state variable and model output (Monod et al., 

2006; Wallach et al., 2014).   Roughly, two methods for uncertainty analysis can 

be identified: frequentists and Bayesians. In the first case the main steps are: i) 

objectives specification, ii) definition of sources of uncertainty by using 

probability density functions, iii) computation of model outputs and iv) calculation 

of statistics (Wallach et al., 2014). Regarding Bayesian methods the 

Generalized Likelihood Uncertainty Estimation (GLUE) technique is an 

innovative uncertainty procedure (Makowski et al., 2002) used with 
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environmental simulation models. GLUE popularity can be attributed to its 

simplicity and its applicability to nonlinear systems. This method is based upon 

Monte Carlo simulation, in which parameter sets may be sampled from some 

probability distribution function (PDF). The most used PDF is a uniform 

distribution. Each parameter set is used to produce a model output; the 

acceptability of each model run is then assessed using a goodness-of-fit 

criterion which compares the predicted to observed values over some calibration 

period. Several likelihood functions can be used such as RMSE, the inverse 

error variance, efficiency index, etc. as part of the GLUE procedure. 

Recently, the VegSyst model was developed to assist the Nitrogen (N) supply 

and irrigation management of horticultural crops (Gallardo et al., 2014; Gallardo 

et al., 2016). One of the most useful practical features of this model is that it 

provides effective simulation of Dry Matter Production (DMP), Nitrogen Uptake 

(Nup), and Evapotranspiration (ETC) for greenhouse crops. This model has 

been calibrated and validated for several vegetable crops (muskmelon, pepper 

and tomatoes) grown in Mediterranean-type plastic greenhouse (Gallardo et al., 

2011; Gallardo et al., 2016). The simplicity of the model and its good 

performance for crops with different planting dates makes it suitable for its 

incorporation into decision support systems. So far there is a lack of uncertainty 

analysis for this model. Thus, the aim of this research was to modify the 

VegSyst model including a new thermal time concept and a leaf area index (LAI) 

sub-model, in order to improve the prediction of DMP and, N uptake. A second 

objective was to carry out an uncertainty analysis of the modified VegSyst 

model. 

5.2 Material and methods 

5.2.1 Experimental setup 

 
The experiments were carried out in a research facility, located at University of 

Chapingo, Mexico (20° 19’ N, 98° 53’ W, and 2240 m) during the 2015 autumn-

winter season. The experiment was carried out in a glass greenhouse type 
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chapel with dimensions of 8 x 8 m, oriented N-S. A tomato (Solanum 

lycopersicum L.) crop cultivar "CID F1" was grown in a hydroponic system. 

Plastic bags of 10 liters of capacity were used which were filled with substrate 

"tezontle" (volcanic sand) with a density of 3.5 plants m-2. Tomato seeds were 

sown on 18 July 2015 and tomato seedlings were transplanted on 21 August 

2015. A weather station (Onset Computer Corporation) was installed inside of 

the greenhouse. Temperature and relative humidity were measured with a S-

TMB-M006 model sensor placed at a height of 1.5 m. Global radiation was 

measured with a S-LIB-M003 sensor was located 3.5 m above the ground. Both 

sensors were connected to a datalogger U-30-NRC model, which recorded data 

every minute. All data were taken from the central rows of the greenhouse. Dry 

weigh, LAI, and N uptake were measured each ten days. 

5.2.2 Modified VegSyst (mod-VegSyst) model description 
 

The VegSyst model simulates crop biomass production, crop N uptake and crop 

evapotranspiration in greenhouse grown vegetable crops (Gallardo et al., 2014; 

Gallardo et al., 2011; Gimenez et al., 2013). The model inputs are daily climatic 

data of maximum and minimum temperature, relative humidity, and integral of 

solar radiation. The model assumes that crops have no water and nutrient 

limitations. The modified VegSyst model described in discrete time has the 

photo-thermal time (TPTTP, MJ m-2 d-1), the dry matter (DMP, g m-2 d-1) and the 

nitrogen uptake (Nup, g m -2 d -1) as state variables and these same variables 

besides the crop Leaf Area Index (LAI, dimensionless) are output variables. The 

dynamic equations and main modifications are given as follows: 

TPTTPkTPTTPkTPTTP  )()1(              (1) 

DMPkDMPkDMP  )()1(               (2) 

upupup NkNkN  )()1(
               (3) 

)(24/)(
24
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
 

              (4) 
In contrast to the cumulative thermal time (CTT) which was used in the VegSyst 

model (Gallardo et al., 2011) in mod-VegSyst the product of thermal time and 
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photosynthetically active radiation (PAR) proposed was used (Dai et al., 2006; 

Xu et al., 2010). The thermal time (TT , °C) is defined as the ratio of the growth 

rate under conditions of actual and optimum temperature conditions: 

𝑇𝑇 =

{
 
 

 
 
0 (𝑇𝑎 < 𝑇𝑚𝑖𝑛)
(𝑇𝑎 − 𝑇𝑚𝑖𝑛)/(𝑇𝑜𝑏 − 𝑇𝑚𝑖𝑛) (𝑇𝑚𝑖𝑛 ≤ 𝑇𝑎 < 𝑇𝑜𝑏)
1 (𝑇𝑜𝑏 ≤ 𝑇𝑎 ≤ 𝑇𝑜𝑢)
(𝑇𝑚𝑎𝑥 − 𝑇𝑎)/(𝑇𝑚𝑎𝑥 − 𝑇𝑜𝑢) (𝑇𝑜𝑢 < 𝑇𝑎 ≤ 𝑇𝑚𝑎𝑥)
0 (𝑇𝑎 > 𝑇𝑚𝑎𝑥)

                                         (5) 

where aT
, minT , maxT

, obT
, ouT

(oC) are the air, top lower, top upper, optimum 

minimum and optimum maximum, temperature for crop growth, respectively.  

gRfPARkPAR )(
                                                                                            

(6)  
where Rg (MJ m-2 d-1) is the daily global radiation above the crop and fPAR

(parameter) is PAR fraction of 
gR . 

)(kPARfRUEDMP PARi                          (7) 
where RUE (dimensionless) is the parameter radiation use efficiency parameter. 

Another major difference between VegSyst and mod-VegSyst is the calculation 

of the fraction of daily intercepted PAR ( PARif  ) by using the exponential function 

instead of very complex light interception functions (Gallardo et al., 2011; 

Gallardo et al., 2014) 

))(exp(1 kLAIkf PARi                          (8) 
where k is the extinction coefficient.  

Daily Leaf Area Index was modeled in mod-VegSyst using the concept photo-

thermal time (Dai et al., 2006; Xu et al., 2010). It is worthwhile to mention that 

LAI is not modelled in the VegSyst model (Gallardo et al., 2011).  

dAkLAI f )(
                         (9) 
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where d is the density of planting in the greenhouse. To simulate foliar area 

index, the Gompertz growth curve was used (Winsor, 1932). The leaf area (
fA ,

2m ) 

)))(exp(exp( 321 kTPTTPcccA f 
           (10) 

where 1c , 2c , 3c
 are model parameters.  

)(
100

)(%
kDMP

kN
Nup 

             (11) 
The Nitrogen content is calculated by the following equation: 

)()(% kDMPakN b              (12) 
where 𝑎 and 𝑏 are calibration parameters obtained from experimental data. The 

whole set of mod-VegSyst parameters are described in Table 5.1. The modified 

VegSyst model was programed in Matlab environment. 

5.2.3 Uncertainty analysis (UA) 
 
The influence of parameter uncertainty on model outputs uncertainty was 

studied through a series of forced perturbations on the parameters.  An 

Uncertainty Analysis in dynamic models encompasses four main steps (Monod 

et al., 2006; Wallach et al., 2014). 1) Definition of objectives; which is our case 

was the assessment of model parameters uncertainties on outputs dry matter, 

nitrogen uptake and LAI. 2) Definition of sources of uncertainty which were the 

model parameter with uniform probability density functions. The 10% and 20% 

variation below and above the nominal values of the model parameters were 

used. 3) Generation of values of input factors and calculation of model outputs. 

Latin Hypercube sampling (Helton et al., 2005) was used to generate the model 

parameter values and Monte Carlo simulation was used to compute the model 

outputs. For both basic statistics and histograms calculations and GLUE 

analysis, 10,000 simulations were run.  4) Outputs uncertainty calculation. 

Several statistics and histograms were calculated from the Monte Carlo 

simulations. The last accumulated value of the predicted variables dry matter, 
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nitrogen uptake and LAI by the model mod-VegSyst was used in the Uncertainty 

Analysis. Since the performed UA assumes that the model parameters are 

independent, a correlation analysis was not carried out. In case of GLUE the 

likelihood function was defined as the RMSE and 95% confidence intervals and 

scatter plots were calculated. The GLUE software which is programmed as part 

of the Sensitivity Analysis For Everybody (SAFE) Toolbox for Matlab (Pianosi et 

al., 2015) was used. 

Table 5.1.Parameters of the modified VegSyst model with 20% of variation of 
their nominal value 

Name Definition Nominal 

Value 

Lower 

Bound 

Upper 

Bound 

Unit 

Parameters      

Tmax Top upper temperature 35.00 28.00 42.00 °C 

Tmin Top bottom temperature 10.00 8.00 12.00 °C 

Tob Optimum minimum temperature 17.00 13.60 20.40 °C 

Tou Optimum maximum temperature 24.00 19.20 28.80 °C 

RUE Radiation use efficiency 4.01 3.21 4.81 g MJ-1 

PAR 

a N concentration in the dry biomass at the end of 

the exponential growth period 

12.38 9.90 14.86 -- 

b Is the slope of the relationship -0.07 -0.06 -0.08 -- 

c1 Maximum foliar area 1.79 1.43 2.15 -- 

c2 Shape coefficient 3.99 3.19 4.79 -- 

c3 Shape coefficient 0.03 0.02 0.04 -- 

fPAR
 

Ratio converter Rg to PAR 0.50 0.40 0.60 -- 

k Extinction coefficient 0.70 0.56 0.84 -- 

d Plant density 3.50 2.80 4.20 Plant m-2 

Outputs      

LAI Leaf area index    -- 

DMP Dry matter production    g m-2 

N Nitrogen uptake    g m-2 

 

5.3 Resuts and discussion 
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Figure 5 .1 Histograms corresponding to the DMP and Nup estimated at the end 
of the crop cycle, from 10000 samples of a uniform distribution for 
the mod-VegSyst model parameters using Latin hypercube 
sampling. 

Figures 5.1 and 5.2 show histograms of the Dry matter production, Nitrogen 

uptake and Leaf area index predicted by the modified VegSyst model for Latin 

Hypercube sampling only in case of 20% of variation around the nominal values 

of the parameters. Table 5.2 shows main statistical measures.  

 

Figure 5.2 Histogram corresponding to the LAI, estimated at the end of the crop 
cycle, from 10000 samples of a uniform distribution for the modified 
VegSyst model parameters using Latin hypercube sampling. 
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Figure 5.3 Figure 3. Simulation (10000) of the DMP (a) and Nup (b) obtained by 
modified VegSyst model by using GLUE method with 95% of 
confidence interval. 

 
 

Figure 5.4 Simulation (10000) of the LAI (a) obtained by modified VegSyst 
model by using GLUE method with 95% of confidence interval and 
(b) the scatterplot of the parameter RUE respect RMSE of DMP 
variable. 

 
The histogram of DMP turned out to be fairly symmetric as can be seen in 

Figure 5.1. This is confirmed quantitatively by its skewness value close to cero 

(Table 5.2). In contrast the histograms of Nup and LAI were less symmetric than 

the corresponding to DMP. They had larger skewness values. The negative 

value of skewness in case of LAI means that the data are more spread out to 

the left than to the right of the mean as it is confirmed by Figure 5.2. In case of 

DMP and Nup data are slightly, more spread out to the right than to the left of 

the mean. However, seemingly the three variables DMP, Nup and LAI follow a 

normal distribution given that their kurtosis values are close to 3.0 (Table 5.2). 

Table 5.2.Statistics calculated for variables predicted by the mod-VegSyst model 
using 10000 samples with variation of 10% and 20% of the nominal 
value of the parameters obtained by Latin Hypercube sampling of 
thirteen model parameters using a uniform probability function. 

Statistics Dry Matter 

Production (DMP) 

Nitrogen Uptake 

(Nup) 

Leaf Area Index (LAI) 

 10% 20% 10% 20% 10% 20% 

Minimun 294.22 22.81 33.50 2.72 3.53 0.31 

Maximun 896.22 1189.97 100.33 141.81 7.30 8.82 
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Mean 588.54 568.36 64.09 61.90 5.63 5.35 

Variation coefficient 15.25 31.42 15.67 32.48 10.19 23.26 

Skewness 0.02 0.07 0.13 0.25 -0.05 -0.24 

Kurtosis 2.77 2.80 2.87 2.98 2.83 3.21 

 
Figures 5.3 and 5.4 show the 95% of confidence interval calculated by the 

GLUE method from 10,000 simulations for Dry matter production, Nitrogen 

uptake and Leaf area index for the model using the parameter’s value by Latin 

Hypercube sampling of the model parameter values. The three variables are 

predicted quite precisely by the modified VegSyst model. Though, according to 

the coefficient of variation the LAI variable is better predicted by the model than 

DMP and Nup (Table 5.2). In fact, there is more uncertainty in the model 

regarding DMP and Nup than LAI predictions. Whether or not the mod-VegSyst 

model has similar or better performance than the original VegSyst model 

(Gallardo et al., 2011) requires a detailed comparison between the two models. 

Leaf Area Index can be modeled as a function of thermal time. This approach 

works well when daily temperature and radiation are closely correlated, but it is 

no longer valid for greenhouse or a winter crop as has been discussed by De 

Reffy et al (2009). We have proposed a better approach based on the photo-

thermal concept (Xu et al., 2010). As it is seen in the figure 5.4b, RUE values 

has good performance when it takes value up to 3 which  is according the 

remark made by  De Reffy et al (2009) that a limitation of fraction of light 

intercepted occur when density is low, because the assumption of homogenous 

plantation densities.  

Table 5.2 shows that when the nominal value of the parameters are varied from 

20% to 10%, which means decreasing the uncertainty of the model parameters, 

the coefficient of variation (uncertainty) of the predicted variables DMP, Nup and 

LAI, are reduced almost 50% for the three output variable. However, as 

happening on increasing uncertainty, LAI is better predicted by the mod-VegSyst 

model than DMP and Nup. 

5.4 Conclusions 
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The original VegSyst model was modified by replacing the original thermal time 

state variable by a photo-thermal time, namely the normalized thermal time 

times PAR as a state variable. A new and simpler light interception function 

which uses LAI was proposed. The uncertainty analysis based on Monte Carlo 

simulation and the GLUE approach shows that: 

 The modified VegSyst model makes acceptable predictions of DMP, Nup 

and LAI. 

 The LAI is predicted with slightly less uncertainty (more accurately) than 

DMP and Nup. The uncertainty associated with DMP and Nup is rather 

similar. 

 The GLUE method can be very helpful in model calibration of greenhouse 

crops. 

5.5 Reference 
 
Dai J., Lou W., Li Y., Yuan C., Chen Y. and Ni J. (2006). A simple model for 

prediction of biomass production and yield of three greenhouse crops. 
Acta Hort. 718:81-87. DOI: 10.17660/ActaHortic.2006.718.8 

De Reffy P.,  Heuvelink E.,  Guo Y.,  Gang Hu B.,  Gui Zhang B. 2009. Coupling 
Process-Based Models and Plant Architectural Models: A Key Issue for 
Simulating Crop Production. Crop Modeling and Decision Support. pp 
130-147: 10.1007/978-3-642-01132-0_15. 

Gallardo, M., Gimenez, C., Martinez-Gaitan, C., Stockle, C.O, Thompson, R.B., 
Granados, M.R. (2011). Evaluation of the VegSyst model with muskmelon 
to simulate crop growth, nitrogen uptake and evapotranspiration. 
Agricultural Water Management 101: 107-117. 
doi:10.1016/j.agwat.2011.09.008 

Gallardo, M., Thompson, R.B., Gimenez, C., Padilla, F.M., Stockle, C.O. (2014). 
Prototype decision support system based on the VegSyst simulation 
model to calculate crop N and water requirements for tomato under 
plastic cover. Irrigation Science, 32: 237-253. DOI: 10.1007/s00271-014-
0427-3 

Gallardo, M., Fernández, M.D., Gimenez, C., Padilla, F.M. and Thompson, R.B. 
(2016). Revised VegSyst model to calculate dry matter production, critical 
N uptake, and ETc of several vegetable species grown in Mediterranean 
greenhouses. Agricultural Systems 146:30-43. DOI: 
10.1016/j.agsy.2016.03.014 

http://dx.doi.org/10.17660/ActaHortic.2006.718.8
http://link.springer.com/book/10.1007/978-3-642-01132-0


 

101 

Gimenez, C., Gallardo, M., Martínez-Gaitán, C., Stockle, C.O, Thompson, R.B., 
Granados, M.R. (2013). VegSyst, a simulation model of daily crop growth, 
nitrogen uptake and evapotranspiration for pepper crops for use in an on-
farm decision support system. Irrigation Science 31:465-477. DOI: 
10.1007/s00271-011-0312-2. 

Helton, J.C., Davis, F.J. and Johnson, J.D. (2005). A comparison of uncertainty 
and sensitivity analysis results obtained with random and Latin hypercube 
sampling. Reliability Engineering & System Safety 89: 305-330. 

Makowski, D., Wallach, D., and Tremblay, M. (2002). Using Bayesian approach 
to parameter estimation; comparison of the GLUE and MCMC methods. 
Agronomy 22: 191-203. http://dx.doi.org/ 10.1051/agro:2002007 

Monod, H.; Naud, C.; Makowski, D. (2006). Uncertainty and sensitivity analysis 
for crop models, pp 55-96. In: Working with Dynamic Crop Model. 
Elsevier. Amsterdam. The Netherlands. 

Xu, R., Dai, J., Lou, W., Yin, X., Li, Y., Tai, X., Han, L., Chen, Y., Lin, L., Li, G., 
Zou, C., Du, W.,  and Diao, M. (2010). A photothermal model of leaf area 
index for greenhouse crops. Agricultural and Forest Meteorology 
150(2010): 541-552. 

Pianosi, F., Sarrazin, F. and Wagener, T. (2015). A Matlab toolbox for global 
sensitivity analysis. Environmental Modelling Software 70: 80-85. 
http://dx.doi.org/10.1016/j.envsoft.2015.04.009. 

Saltelli, A., Tarantola, S., Campolongo, F., Ratto, M. (2004). Sensitivity analysis 
in practice. A guide to assessing scientific models. John Wiley & Sons. 
Ltd. Chichester, England. 

Wallach, D., Makowski, D., Jones, J.W., and Brun, F. (2014). Working with 
Dynamic Crop Models. Methods, Tools and Examples for Agriculture and 
Environment. Elsevier. Amsterdam. The Netherlands.  

Winsor C.P. (1932). The Gompertz curve as a growth curve. Proceedings of the 
National Academy of Sciences of the United States of America 18:1-8 

 

 

 

 

 

 

 

http://dx.doi.org/10.1016/j.envsoft.2015.04.009


 

102 

6. GLOBAL SENSITIVITY ANALYSIS AND CALIBRATION 
USING A DIFFERENTIAL EVOLUTION ALGORITHM OF 

HORTSYST MODEL FOR TOMATO IN SOILLESS CULTURE 
 

A. Martinez-Ruiz1*, I.L. López-Cruz 1, A. Ruiz-García1, J. Pineda-Pineda2 

1Agricultural Engineering Graduate Program, University of Chapingo, Chapingo, Mexico; 2Soils 
Dept., University of Chapingo, Chapingo, Mexico * Corresponding author 

(mara2883@hotmail.com) , (submitted to Water Resource Management journal) 

Abstract 

Simulation models of crop growth provide a widely accepted tool for assessing 

agricultural system management in response to weather and it is an important 

tool for growers to track crop development and improve for the management of 

irrigation with the aim to save water and nutrients and to reduce environmental 

impact. When the number of parameters increases in a model, the uncertainty of 

model predictions due to the uncertainty of parameters becomes more 

important. Under such conditions, it is important to determine the dominant 

parameters of the model. Sensitivity analysis is a first step to elucidate the 

importance of these parameters. Calibration of dynamic models is another issue 

of considerable interest which usually consist in adjusting the parameters to 

minimize the differences between model output variables and observed data. 

The aim of this work was carried out a global sensitivity analysis with Sobol’s 

method for the HortSyst new nonlinear model to simulate the photo-thermal 

time, daily dry matter production, nitrogen uptake, leaf area index, crop 

transpiration, the model was calibrated with a differential evolution algorithm. 

Two experiments were set for autumn-winter and spring-summer with a tomato 

crop (Solanum Lycopersicom L) in soilless culture, with the sensitivity analysis 

nine parameters were selected to be calibrated, and the performance of the 

model after the calibration process showed an effectiveness fit the standard 

deviation of each parameter and the statistics of fit goodness found in the output 

responses were acceptable for both crop seasons. 
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Keywords: parameter estimation, irrigation management, crop nutrition, 

simulation model, uncertainty parameters. 

6.1  Introduction 

Tomato (Solanum Lycopersicom L) is one of the most important vegetable 

around the world and its cropping systems include the use of soil and 

hydroponics in which the nutrient solution and irrigation management is 

important to improve the nutrient uptake by plants. Simulation models of crop 

growth provide a widely accepted tool for assessing agricultural system 

management in response to weather and it is an important tool which may help 

growers to track crop development and improve the management of irrigation to 

save water and nutrients to reduce environmental impact. A number of 

vegetable crop models have been developed for simulating the dynamic 

responses of tomato to its environment (Gallardo et al., 2014; Heuvelink, 1999; 

Jones et al., 1991). A decision support system (DSS) based on a mathematical 

model requires a relatively simple simulation model to calculate the nitrogen 

uptake and daily crop transpiration using a small number of readily available 

data input. Various models are available that simulate nitrogen and water 

dynamics in the crop soil system such as EPIC (Williams et al., 1989) STICS 

(Brisson et al. 1998) and CropSyst (Stockle et al.,2003), but they are large and 

complex which require numerous input variables and generally have been 

developed for cereal crops. HortSyst is a new model that describes nonlinear 

dynamic systems and it simulates output variables such as photo-thermal index, 

dry matter production, leaf area index, nitrogen uptake, and crop transpiration. 

Therefore it is desirable to conduct a sensitivity analysis (SA) to determine which 

parameters requires more certainty. SA investigates the relation between 

parameters and outputs of a simulation model. In this context “parameters” are 

primarily equations coefficients and the threshold values in the model. An output 

is the value of any variable computed by the model or any feature or statistics 

extracted from it. The supposition is that each parameter and output can be 

described by a single number (Norton, 2015). Saltelli et al. (1995) define SA as 

“the study of how uncertainty in the output of a numerical model can be 
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apportioned to different sources of uncertainty in the model input”. The aim of 

SA is to determine how sensitivity the output of a model is with respect to the 

elements of the model, which are subject to uncertainty or variability (Pianosi 

and Wagener, 2015); SA methods are typically classified as local (i.e, derivative 

based) or global (Saltelli et al., 2008). When the purpose of the SA is to study 

the effect of several input parameters on the model output responses, local SA 

is less useful than global sensitivity analysis (GSA), because the effect by 

second and higher sensitivity indices of the parameters interaction would be 

missed and the first order sensitivity inadequately represent model variation in 

change in input (Ogejo et al., 2010) where the output variability is evaluated 

while the input factor vary in their individual uncertainty domains (Monod et al., 

2006). GSA methods such as, Morris (Morris,1991), Fourier Amplitude 

Sensitivity Test (FAST) ( Saltelli et al., 1999) and Sobol’s method (Sobol 1993) 

can determine not only sensitivity of individual factor, but sensitivity of 

interactions between factors, as well very little SA literature exist for crop models 

that concentrate specifically on the methodology, particularly sensitivity 

differences between GSA methods. When the number of parameters increase, 

the uncertainty of model predictions due to the uncertainty of parameters 

becomes more important. Under such conditions, it is important to determine the 

dominant parameters of the model (Cooman and Schrevens 2006). Sensitivity 

analysis is a first step to elucidate the importance of these parameters (Cooman 

and Schrevens, 2007). Calibration of dynamic models is another issue of 

considerable interest which usually is done by adjusting the parameters to 

minimize the difference between simulated and observed data. Usually, the 

outputs are observed at specific sampling time, leading to a set of 

measurements (van Straten, 2008; Vazquez-Cruz et al., 2014). Recently, some 

research has applied global methods like evolutionary techniques as genetic 

algorithm and evolution strategies. Differential evolution algorithms are a 

population-based optimization methods that attacks the starting point problem 

by sampling the objective function at multiple, randomly chose initial point (Storn 

and Price, 1997). As evolutionary algorithms they also use operators to seek for 
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the best solution after a number of generations and was designed to be a 

stochastic direct search method and it has good convergence properties. This is 

an optimization and heuristic search technique that use techniques inspired by 

evolutionary biology such as inheritance, mutation, selection and crossover 

(Price et al., 2005). Some works where this tool has been used were in the 

calibration of SUCROS model using evolutionary and bio-inspired algorithms for 

Husk tomato crop by César et al. (2014), the application of genetic algorithms 

for TOMSEED model (Katsoulas et al., 2015), and Dai et al. (2009) used a 

genetic algorithm for cucumber growth model. Prior to proper calibration of 

mathematical model, it is important to carry out a sensitivity analysis, which 

evaluate the relative importance of output variables and model parameters on 

the evolution over time of the state variable(Saltelli et al., 2000). 

The aim of the current work was to perform a sensitivity analysis on HortSyst 

Model using the Sobol´s methods in order to select the most sensitive 

parameters of the model. Once the parameters with high sensitivity were 

selected it was carry out a calibration of the parameters using a differential 

evolution method. 

6.2 Material and methods 

6.2.1 Greenhouse condition and data acquisition 

Two experiments were carried out under greenhouse conditions, during the 

autumn-winter, and spring-summer season, located at the University of 

Chapingo, Mexico. Geographicaly located: 19° 29’ NL, 98° 53 WL and 2240 m. 

Two tomatoes (Solanum lycopersicom L.) crop cultivar "CID F1" were grown in 

hydroponic systems using volcanic sand (Tuff) as a substrate. Plants were 

distributed with a density of 3.5 plants m-2. For the first experiment, tomato 

seeds were sown on 18 July 2015, and the plants were transplanted on 21 

August 2015, in a type chapel glasshouse with 8 x 8 m dimensions. The seeds 

for the second experiment were sown on 24 March 2016 and transplanted on 24 

April 2016, in a plastic greenhouse with natural ventilation with dimensions of 8 x 

15 m. Both experiments were fertilized with Steiner nutrient solution (Steiner, 
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1984). A HOBO weather station (Onset Computer Corporation) was installed 

inside of the greenhouses. Temperature and relative humidity were measured 

with an S-TMB-M006 model sensor placed at a height of 1.5 m. Global radiation 

was measured with an S-LIB-M003 sensor located at 3.5 m above the ground. 

Both sensors were connected to a data logger U-30-NRC model, and the data 

were recorded every minute, and subsequently the data were processed to 

obtain average data at hourly intervals. 

In each experiment, three plants were chosen randomly for the sampling of each 

ten days to measure dry matter, nitrogen uptake, and leaf area index. The plants 

were dried out during 72 h at 70 °C in an oven. Nitrogen was determined by the 

Kjeldahl method. The leaf area index was estimated by a nondestructive method 

which consisted in taking four plants randomly in order to get measurements of 

width and length of the plant's leaves and also the total leaf area using a plant 

canopy analyzer LAI-3100 (LI-COR, USA). From the measurements, nonlinear 

regression models were fitted in order to estimate this variable, because the 

plants sampled during the measurement of the transpiration had to be kept alive 

until to end of the experimental phase. The crop transpiration was measured 

every minute by a weighing lysimeter located in a central row of the 

greenhouses. The device includes an electronic balance (scale capacity =120 

kg, resolution ±0.5 g) equipped with a tray carrying four plants for both 

experiments. The weight loss measured was assumed to be equal to the crop 

transpiration. 

6.2.2 Model Description 

The dynamic HortSyst model (Martinez et al., 2017) assumes that the crop have 

no water and nutrient limitations, and it simulates Photo-thermal time (𝑃𝑇𝐼, MJ d-

1), dry matter production (𝐷𝑀𝑃,  g m-2), and Nitrogen uptake (𝑁𝑢𝑝,  g m-2) as the 

state variables the leaf area index (𝐿𝐴𝐼, m2 m-2) and crop transpiration (𝐸𝑇𝑐, kg 

m-2) as output variables. In Table 1 are listed the mathematical equations of the 

three-state variables and the two output variables. Figure 1 shows the general 

structure of the model using a Forrester diagram. The model structure is based 

on VegSyst model developed by Gallardo et al. (2011), Gallardo et al. (2016), 
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Gallardo et al. (2014), and Giménez et al. (2013). The input variables of the 

model are hourly measurements of air temperature (°C), relative humidity (%), 

and integration of solar radiation (𝑊𝑚−2) (the minimum, average and maximum 

daily values) which are shown in Table 3. The models use the light (radiation) 

use efficiency approach (Kang et al., 2008; Lemaire et al., 2008; De Reffye et 

al., 2009) which allows the calculation of daily dry matter production (∆𝐷𝑀𝑃) Eq. 

(8) as a function of the photosynthetically active radiation (PAR) Eq. (9), crop 

characteristics such as leaf area index (LAI) Eq. (10) and the radiation use 

efficiency parameter (RUE, g MJ-1) as has been proposed by several 

researchers (Shibu et al., 2010; Soltani and Sinclair, 2012). The fraction of light 

intercepted (𝑓𝑖−𝑃𝐴𝑅) formalism relies upon the leaf area index (𝐿𝐴𝐼), which is the 

total functioning leaf area for a unit surface area of ground covered by the plant 

population. The extinction coefficient (dimensionless 𝑘  parameter) is related to 

leaf size and leaf orientation; this assumption is usually robust and tolerates 

some shift for reality. Leaf area index (𝐿𝐴𝐼), is modelled as a function of Photo-

thermal time (𝑃𝑇𝐼) using the Michaelis-Menten equation and is multiplied by the 

density of planting 𝑑 to obtain the leaf area index(𝐿𝐴𝐼). For this purpose, it has 

calculated the normalized thermal time (𝑇𝑇, °C) with Eq. (6) and it is defined as 

the ratio of the growth rate under conditions of actual and optimum temperature 

conditions according to Dai et al. (2006).Then daily Photo-thermal time (∆𝑃𝑇𝐼) 

Eq. (5), is calculated as the product of normalized thermal time with the fraction 

of light intercepted( 𝑓𝑖−𝑃𝐴𝑅) and PAR radiation, then the accumulation of PTI is 

calculated as Eq. (1) (Xu et al., 2010). 

For daily nitrogen uptake ∆𝑁𝑢𝑝, first the nitrogen content %𝑁 is calculated with 

the exponential model (Tei et al., 2002) eq. (11). And it is a function of the daily 

dry matter production (∆𝐷𝑀𝑃) and uptake nitrogen is simulated by Eq. (12). 

Then its accumulated value is given by eq. (3). Finally, the crop transpiration 

(𝐸𝑇𝑐) is computed hourly, with Global radiation, vapor pressure deficit, the 

fraction of light intercepted and leaf area index as shown in eq. (14). And it is 

accumulated with equation (4). 

Table 6.1 HortSyst model equations 
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Variable Definition Equation Units 

𝑷𝑻𝑰 Photo-thermal  

time 

𝑃𝑇𝐼(𝑗 + 1) = 𝑃𝑇𝐼(𝑗) + ∆𝑃𝑇𝐼                                                                (1) 𝑀𝐽 𝑚−2 

𝑫𝑴𝑷 Dry matter 

production 

𝐷𝑀𝑃(𝑗 + 1) = 𝐷𝑀𝑃(𝑗) + ∆𝐷𝑀𝑃                                                          (2)   𝑔 𝑚−2 

𝑵𝒖𝒑 Nitrogen 

Uptake 

𝑁𝑢𝑝(𝑗 + 1) = 𝑁𝑢𝑝(𝑗) + ∆𝑁𝑢𝑝              (3)  

 

𝑔 𝑚−2 

𝑬𝑻𝒄 Daily crop 

transpiration  

𝐸𝑇𝑐(𝑗 + 1) = 𝐸𝑇𝑐(𝑗) + ∆𝐸𝑇𝑐                                                               (4)  𝑘𝑔 𝑚−2 

 

∆𝑷𝑻𝑰 

Daily photo -

thermal time  ∆𝑃𝑇𝐼(𝑗) = (∑𝑇𝑇

24

𝑖=1

(𝑖, 𝑗))𝑃𝐴𝑅(𝑗) × 𝑓𝑖−𝑃𝐴𝑅(𝑗)                                        (5) 

 

𝑀𝐽 𝑚−2 𝑑−1 

 

𝑻𝑻 

  

Normalized 

Thermal 

Time 

𝑇𝑇 =

{
 
 

 
 
0 (𝑇𝑎 < 𝑇𝑚𝑖𝑛)
(𝑇𝑎 − 𝑇𝑚𝑖𝑛)/(𝑇𝑜𝑏 − 𝑇𝑚𝑖𝑛) (𝑇𝑚𝑖𝑛 ≤ 𝑇𝑎 < 𝑇𝑜𝑏)

1 (𝑇𝑜𝑏 ≤ 𝑇𝑎 ≤ 𝑇𝑜𝑢)
(𝑇𝑚𝑎𝑥 − 𝑇𝑎)/(𝑇𝑚𝑎𝑥 − 𝑇𝑜𝑢) (𝑇𝑜𝑢 < 𝑇𝑎 ≤ 𝑇𝑚𝑎𝑥)

0 (𝑇𝑎 > 𝑇𝑚𝑎𝑥)

                    (6) 

 

[
𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛

𝑙𝑒𝑠𝑠
] 

 

 

𝑷𝑨𝑹 PAR  
gRjPAR  5.0)(                                                                                    (7) 𝑀𝐽 𝑚−2 

 

∆𝑫𝑴𝑷 

Daily dry 

matter 

production  

 

∆𝐷𝑀𝑃(𝑗) = 𝑅𝑈𝐸 × 𝑓𝑖−𝑃𝐴𝑅(𝑗) × 𝑃𝐴𝑅(𝑗)                                              (8) 

 

𝑔 𝑚−2 

𝒇𝒊−𝑷𝑨𝑹 Intercepted 

PAR fraction 

 

𝑓𝑖−𝑃𝐴𝑅 = 1 − exp (−𝑘 × 𝐿𝐴𝐼(𝑗))                                                           (9) 

[
𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛

𝑙𝑒𝑠𝑠
] 

 

𝑳𝑨𝑰(𝒋) Leaf Area 

Index 

 𝐿𝐴𝐼(𝑗) = [
𝑐1×∆𝑃𝑇𝐼(𝑗)

𝑐2×∆𝑃𝑇𝐼(𝑗)
] × 𝑑                                                                    (10) 𝑚2 𝑚−2 

%𝑵(𝒋) Nitrogen 

content 

 %𝑁(𝑗) = 𝑎 × (∆𝐷𝑀𝑃)−𝑏                                                                    (11)  [
𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛

𝑙𝑒𝑠𝑠
] 

∆𝑵𝒖𝒑 Daily 

Nitrogen 

Uptake  

𝑁𝑢𝑝(𝑗) = (%𝑁(𝑗)/100) × 𝐷𝑀𝑃(𝑗)                                                     (12) 𝑔 𝑚−2 

𝑬𝑻𝒄(𝒊) Hourly 

Transpiration  

𝐸𝑇𝑐(𝑖) = 𝐴 × (1 − exp (−𝑘 × 𝐿𝐴𝐼(𝑗))) × 𝑅𝑔(𝑖) +

𝐿𝐴𝐼(𝐷𝑃𝑉)𝐵(𝑑,𝑛)                                                                                                                                    (13) 

𝑘𝑔 𝑚−2 ℎ−1 

𝑬𝑻𝒄(𝒋) Daily 

Evapotranspir

ation  

∆𝐸𝑇𝑐 =∑𝐸𝑇𝑐(𝑖)

24

𝑖=1

                                                                                        (14) 
 

𝑘𝑔 𝑚−2 
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Figure 6 .1 Forrester diagram for the HortSyst crop Model with three state 
variables 

6.2.3 Sensitivity analysis 

In order to calculate the global sensitivity indices the following procedure 

proposed by Saltelli et al. (2008), Saltelli et al.( 2000), and Saltelli et al. (2006) 

was applied.  

Step 1. Objective specification. In order to determine which model parameter 

has a small or large influence on the state and outputs variables of the HortSyst 

model. 

Step 2. Factor selection. Sixteen parameters of the HortSyst model were 

included in the sensitivity analysis and one set of parameter variation ranges 

were used, the upper and lower limits of the crop parameters, as is presented in 

Table. 2 it was determined by the 10% and 20% perturbation of the nominal 

parameters values taken from the literature for the spring and summer season 

crop.  

Table 6.2 Definition of the HortSytst parameters used for simulation under 
experimental condition 
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No Parameter Symbol Range 10% Range 20% Reference 

1 Radiation Use Efficiency (g MJ-

1) 

RUE 2.79-3.41 2.48-3.72 Challa and 

Bakker 

(1998), 

Gallardo et 

al., (2014) 

2 Extinction coefficient k 0.58-0.70 0.51-0.77 Sánchez et 

al. (2011) 

3 N concentration in the dry 

biomass at the end of the 

exponential growth period (g m-

2) 

 

a 

6.79-8.31 6.04-9.06 Gallardo et 

al., (2014) 

4 Is the slope of the relationship b -0.17-(-0.14) -0.18-(0.12) Gallardo et 

al., (2014) 

5 Slope of the curve (m-2) c1 2.76-3.38 2.46-3.68 Estimated 

6 Intersection coefficient c2 158.08-193.2 140.51-210.77 Estimated 

7 Radiative coefficient A 0.44-0.54 0.39-0.59 Sánchez et 

al. (2011) 

8 Aerodynamic coefficient during 

day (W m-2 kPa-1) 

Bd 10.08-12.32 8.96-13.44 Sánchez et 

al. (2011) 

9 Aerodynamic coefficient during 

night (W m-2 kPa-1) 

Bn 7.45-9.11 6.62-9.94 Sánchez et 

al. (2011) 

10 Plant density (plants m-2) d 3.15-3.85 2.8-4.2 stablished 

11 Initial photo-thermal time (MJ 

m-2) 

PTIini 0.06-0.07 0.05-0.07 Measured 

12 Initial dry matter production (g 

m-2) 

DMPIni 0.22-0.27 0.20-0.29 Measured 

13 Top bottom temperature (°C) Tmin 9.00-11.00 8.00-12.00 Chu et al., 

(2009) 

14 Top upper temperature (°C) Tmax 31.50-38.50 28.40-42.00 Chu et al., 

(2009) 

15 Optimum minimum 

temperature (°C) 

Tob 15.30-18.70 13.60-19.80 Peet & 

Welles 

(2005) 

16 Optimum maximum 

temperature (°C) 

Tou 21.60-26.40 19.80-28.40 Peet & 

Welles 

(2005) 
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Step 3. Choose the probability density function (PDFs). As no further 

information is available a uniform probability density was selected for each one 

of the parameters of the model.  

Step 4. Selection of sensitivity analysis method. The Sobol’s method were used 

which is based on the calculation of the variance (Monod et al., 2006; Saltelli et 

al., 2008) to obtain the main (first order) sensitivity indices and total sensitivity 

indices.  

Step 5. Input sample generation. A sample of size (N=10000) was generated for 

Sobol’s sampling method to achieve an adequate estimation of sensitivity 

analysis (Saltelli et al. 2008). The Latin hypercube sampling (LHS) was used for 

both methods because it is an efficient stratified sampling method according to 

(Helton et al., 2005). 

Step 6. Model evaluation. Using the samples before mentioned the simulation 

was carried out to calculate the sensitivity for the parameters (Table 2) that are 

linked to the photo-thermal index (𝑃𝑇𝐼), dry matter production (𝐷𝑀𝑃), Nitrogen 

uptake (𝑁𝑢𝑝), and crop transpiration (𝐸𝑇𝑐). The temporal variation of parameters 

sensitivity indices was analyzed, in the days 10, 25, 40, 80 and 119 after 

transplant and also the sensitivity analysis was carried out integrating daily the 

outputs variables until the end of the experiment during the spring and summer.  

Step 7. Analysis of the output model. The value of the sensitivity indices of first 

order and total sensitivity index (𝑆𝑖  and 𝑆𝑇𝑖  ) were estimated using Janon’s 

estimator (Janon et al. 2014) to evaluate the importance of each of the HortSyst 

model parameters. 

6.2.4 Global sensitivity analysis (GSA). Variance based method 

The function 𝑌 = 𝑓(𝑿) = 𝑓(𝑋1, 𝑋2⋯𝑋𝑘) is defined in the n-dimensional cube 𝑲𝑘. 

If the input variables are mutuality independent, there exists a decomposition of 

𝑓(𝑿) as in (Fang et al., 2015; Saltelli et al., 2010; Wu et al., 2012; Wu., 2014)  
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𝑓(𝑋1,⋯,𝑋𝑘) =  𝑓𝑜 +∑𝑓𝑖(𝑋𝑖)

𝑘

𝑖=1

+ ∑ 𝑓𝑖𝑗(𝑋𝑖𝑋𝑗) +

1≤𝑖<𝑗≤𝑘

⋯+ 𝑓12…𝑘(𝑋1, … , 𝑋𝑘)                 (15) 

Where  𝑓𝑖 = 𝑓𝑖(𝑿𝒊), 𝑓𝑖𝑗 = 𝑓(𝑿𝒊 , 𝑿𝒋,) and so on, this decomposition is called high-

dimensional model representation from lower to higher order.   

The basic idea of variance method is to decompose the function on interest into 

terms of increasing dimensionality as in Eq (1), such that all the summands are 

mutually orthogonal. The variance of the output variable 𝑌 can thus decompose 

into: 

𝑉(𝑌) =∑𝑉𝑖

𝑘

𝑖=1

+ ∑ 𝑉𝑖𝑗 +

1≤𝑖<𝑗≤𝑘

⋯+ 𝑉1,2…𝑘                                                                             (16) 

Where 𝑉𝑖, 𝑉𝑖𝑗, 𝑉1,2,…,𝑘 denote the variance of 𝑓𝑖, 𝑓𝑖𝑗, 𝑓1,2,…,𝑘 respectively. Where 𝑉 is 

the variance operator and: 

𝑉𝑖 = 𝑉[𝐸(𝑌/𝑋𝑖)                                                                                                 (17) 

𝑉𝑖𝑗 = 𝑉[𝐸(𝑌/𝑋𝑖 , 𝑋𝑗)] − 𝑉𝑖 − 𝑉𝑗         (18)  

In this approach the first-order sensitivity index 𝑆𝑖, also called main effect index. 

For factor 𝑋𝑖,is given by 

Dividing both sides of eq. (2) by 𝑉(𝑌) 

1 =∑𝑆𝑖

𝑘

𝑖=1

+ ∑ 𝑆𝑖𝑗 +

1≤𝑖<𝑗≤𝑘

⋯+ 𝑆1,2…𝑘                                                                                    (19) 

Where 𝑆𝑖 is the first order sensitivity index 

𝑆𝑖 =
𝑉[𝐸(𝑌/𝑋𝑖)]

𝑉(𝑌)
= 

𝑉𝑖[𝐸−𝑖(𝑌/𝑋𝑖)] 

𝑉
                                                                               (20) 

And 𝑆𝑖𝑗 denote the second order sensitivity index measuring the amount of 

output variance explained by interaction between 𝑋𝑖 and 𝑋𝑗 and so on. 

𝑆𝑖𝑗 =
𝑉[𝐸(𝑌/𝑋𝑖,𝑋𝑗)]−𝑉𝑖−𝑉𝑗

𝑉(𝑌)
                                                                                       (21) 

The total order index effect 𝑆𝑇𝑖 is introduced to account for the total contribution 

of the output variance due to 𝑋𝑖 

𝑆𝑇𝑖 = 𝑆𝑖 + ∑ 𝑆𝑖𝑗 +⋯+ 𝑆1,2⋯𝑘
𝑖<𝑗≤𝑘

                                                                                          (22) 
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It is hard to get 𝑆𝑇𝑖 by eq.(5) when many inputs are involved, and alternative way 

is, 

𝑆𝑇𝑖 =  1 −
𝑉[𝐸(𝑌/𝑋−𝑖)]

𝑉(𝑌)
=  1 − 

𝑉−𝑖

𝑉(𝑌)
                                                                         (23) 

Where 𝑋−𝑖 = (𝑋1,⋯ , 𝑋𝑖−1, 𝑋𝑖+1, ⋯ , 𝑋𝑘) is the input vector without  𝑋𝑖 

To obtain 𝑉[𝐸(𝑌/𝑋𝑖)] and obtain 𝑉[𝐸(𝑌/𝑿−𝑖)] one can use a set of Monte Carlo 

method to estimate the inner expectation, end then repeat the procedure many 

times for different obtain 𝑋𝑖 or (𝑿−𝑖) to get the outer variance. 

6.2.5 Sobol´s computing method 

The standard Sobol´s method for SA was put forward in Sobol ( 2001), as one 

numerical simulation method to get the conditional expectation value for model 

output 𝑌. We first decide the base sampling dimension N, and then we 

implement the following steps. 

1. Generate a Monte Carlo sampling of dimension N of the input factor 

according to their random distributions and form the 𝑁 × 𝑘 matrix 𝑈𝑁×𝑘 (k being 

the dimensions of the input space) with each row a set of parameters; 𝑁 × 𝑘is 

called the “sampling matrix. “ 
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2. Generate another sampling matrix of dimension 𝑁 × 𝑘, 𝑊𝑁×𝑘 called the“ re-

sampling matrix.” 




























xxx

xxx
xxx

W

NNN

NNN

NNN

ki

ki

ki

kN

)()2()2(

)2()2()2(

)1()1()1(

21

1

1









 
 

3. Define a matrix 𝑊´𝑁×𝑘 formed by all columns of 𝑊𝑁×𝑘 except the ith column 

obtained from the ith column of 𝑈𝑁×𝑘 
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4. Define a matrix 𝑈′𝑁×𝑘 formed by all columns of 𝑈𝑁×𝑘 except the ith column obtained 

from the ith column of  𝑊𝑁×𝑘. 
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5. Compute the model output for each set of input parameters from 𝑁 × 𝑘 and 

𝑊´𝑁×𝑘 (that is to say for each row in 𝑁 × 𝑘  and 𝑊´𝑁×𝑘 ) to obtain two column 

vectors of model outputs of dimension N: 𝒚 = 𝑓(𝑈𝑁×𝑘), 𝒚𝑅
′ = 𝑓(𝑊′𝑁×𝑘), 𝒚′ =

𝑓(𝑈′𝑁×𝑘). Alternatively, Wu et al. (2012), argues that 𝒚′ can also be used for 

𝐸−𝑖(𝑌/𝑋𝑖) then the outer 𝑉𝑖[𝐸−𝑖(𝑌/𝑋𝑖)] should be inferior because by doing the 

averaging, we will get more balanced simulation architecture. 

6. The sensitivity indices are hence computed based on scalar products of the 

above defined vectors of model output. 

The applicability of the sensitivity estimates 𝑆𝑖 to a large class of functions 𝑓(𝑿) 

is linked to the possibility of evaluating the multidimensional integral associated 

with this estimates via Monte Carlo methods. For a given sampling size N 

tending to ∞ the following estimates for the mean value of the output is straight-

forward. 

𝑓𝑜 =
1

2𝑁
∑[𝒚(𝑗) + 𝒚𝑅

(𝑗)
]

𝑁

𝑗=1

                                                                                                          (24) 

Where 𝒚(𝑗)is the model output for a sample point in the parameter space 𝒌(𝑘) the 

gat symbol will be used to denote estimate. 

To list the estimator for standard sobol’s in Sobol (2001), the following notation 

will be introduced. 

𝑉̅ =
1

2𝑁
∑[𝒚(𝑗)

2
+ 𝒚𝑅

(𝑗)2
]

𝑁

𝑗=1

                                                                                                      (25) 

𝑉̅𝑖 =
1

2𝑁
∑[𝒚(𝑗)𝒚′𝑅

(𝑗)
+ 𝒚𝑅

(𝑗)
𝒚′(𝑗)]

𝑁

𝑗=1

                                                                                         (26) 
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𝑉̅−𝑖 =
1

2𝑁
∑[𝒚(𝑗)𝒚′(𝑗) + 𝒚𝑅

(𝑗)
𝒚𝑅
′(𝑗)
]                                                                                        (27)

𝑁

𝑗=1

 

𝑉̅ =
1

2𝑁
∑[𝒚(𝑗) + 𝒚𝑅

(𝑗)
]2

𝑁

𝑗=1

                                                                                                         (28) 

Then we estimate the output variance by 

𝑉̂ = 𝑉̅ − 𝑓𝑜
2                                                                                                                                  (29) 

𝑉𝑖[𝐸−𝑖(𝑌/𝑋𝑖)] ≈ 𝑉̂𝑖 = 𝑉̅𝑖 − 𝑓𝑜
2                                                                                                 (30) 

And finally 

𝑆̂𝑖 =
𝑉̂𝑖

𝑉̂
=
𝑉̅𝑖 − 𝑓𝑜

2

𝑉̂
                                                                                                                       (31) 

𝑆̂𝑇𝑖 = 1 −
𝑉̂−𝑖

𝑉̂
= 1 =

𝑉̅−𝑖 − 𝑓𝑜
2

𝑉̂
                                                                                                (32) 

As mentioned in (Fang et al., 2015; Homma and Saltelli, 1996; Wu et al., 2012), 

to compensate the “systematic error” in standard Sobol’s method, better 

estimates for the term 𝑉𝑖[𝐸−𝑖(𝑌/𝑋𝑖)] is obtained by also computing the output if 

the “re-sampling matrix ” 𝑊𝑁×𝑘 we denote it as  𝒚𝑅 = 𝑓(𝑊𝑁×𝑘) we define 𝛾2. 

𝛾2 =
1

2𝑁
∑[𝒚(𝑗)𝒚𝑅

(𝑗)
+ 𝒚′(𝑗)𝒚𝑅

′(𝑗)
]                                                                                          (33)

𝑁

𝑗=1

 

Then the variance estimator is chosen as 

𝑉𝑖[𝐸−𝑖(𝑌/𝑋𝑖)] ≈ 𝑉̂𝑖 = 𝑉̅𝑖 − 𝛾
2                                                                                                 (34) 

For the same reason 

𝑆̂𝑖 =
𝑉̂𝑖

𝑉̂
=
𝑉̅𝑖 − 𝛾

2

𝑉̂
                                                                                                                       (35) 

𝑆̂𝑇𝑖 = 1 −
𝑉̂−𝑖

𝑉̂
= 1 =

𝑉̅−𝑖 − 𝛾
2

𝑉̂
                                                                                                (36) 

6.2.6 DE algorithm 

Genetic algorithms (Gas) belong to a class of algorithms known as evolutionary 

computation. They imitate the process of natural evolution by assigning fitness 
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values to possible solutions of the problem and applying a mathematical model 

of the Darwinian principle of survival of the fitness (Katsoulas et al., 2015). The 

DE algorithm is a population-based stochastic search technique that provides an 

effective methods of searching for the optimum solution to complex problems. In 

recent years, the DE algorithm has obtained increasing attention and has been 

widely used in scientific research. The DE algorithm mainly includes mutation, 

crossover operation and elimination mechanism. The significance of the scale 

factor, the crossover rate and the population size are three main control 

parameters of DE optimization algorithms. The calibration procedure of the 

HortSyst model was as follows: the DE algorithm generated the initial population 

of the parameters, using these values as the decision variables, the HortSyst 

model was run to simulate the output variables. The simulated values were then 

used to evaluate the fitness function, based on which the DE developed the next 

generation candidates. In the calibration process the fitness function is important 

to identifying the optimal values for the model parameters (Xuan et al. 2016). 

6.2.7 Optimization problem description 

Katsoulas et al. (2015) argue that each possible solution to the calibration 

problem consisted of a set of values for each of the parameters. In heuristic 

optimization, each solution must have a quality metric, usually referred to as 

“fitness” of the solution, which is estimated by an appropriate fitness function 

(César et al., 2014; Guzmán et al., 2009).The HortSyst crop model was 

calibrated by solving the minimization problem, which can closely match the 

simulated and observed data of the tomato crop. An objective function (fitness 

function) is commonly expressed as follows. 

𝑝̂ = argmin 𝐽 (𝑝)                                                                                               (37) 

    
 


L
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M

i

ihihh typtywpJ
1 1

2
,)(                                                                     (38) 

𝑦̅ℎ(𝑡𝑖, 𝑝) is the simulated output 𝑦ℎ in time 𝑡𝑖 , 𝑦ℎ(𝑡𝑖) is the measurement of the 

output 𝑦ℎ(𝑡𝑖) in time 𝑡𝑖, 𝐿 is the number of outputs (L= 4), M is the number of 
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samples during the growing period, Where 
hw  is the relative weight of each 

output variables; DMP, Nup, LAI and ETc (0.01, 10, 100,1) respectively. 𝑝 is the 

parameters set of calibration and 𝑝̂ is the parameter that reduces 𝐽(𝑝) to a 

minimum. 

The performance of the models was evaluated using the BIAS and the RMSE, 

and EF statistics was defined as follows (Wallach et al., 2014): 
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Where the number of measurements is 𝑁, 𝑌𝒊  is the measured value for situation 

𝑖 and 𝑌̅𝑖 is the corresponding value predicted by the model. 

6.3 Resuts and discussion 

The environmental conditions measured inside of the greenhouses were the air 

temperature, relative humidity and global solar radiation for the season autumn-

winter and spring-summer, the minimum, mean and maximum values of these 

climatic variables are shown in Table 3.  

Table 6.3 Values of global solar radiation (Rg), air temperature (Ta) and relative 
humidity (RH) during the two crop seasons. 

Climatic variable Autumn-Winter season Spring-Summer season 

Minimum Mean Maximun Minimum Mean Maximun 

𝑹𝒈 (MJ m-2) 0.88 3.99 8.89 5.40 10.59 14.18 

𝑻𝒂 (
oC) 14.12 18.31 21.83 15.31 17.84 21.94 

𝑹𝑯  (%) 62.59 78.58 93.98 29.47 76.82 93.16 

6.3.1 Sobol’s method sensitivity analysis 

The global sensitivity analysis with Sobol’s method was carried out to select the 

parameters that are more sensitive to the uncertainty applied to all parameters 

defined as a variation of 10% and 20% around their nominal values, for this 
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purpose the data of the climatic variables of spring-summer were used. The 

sensitivity indices estimated by Sobol’s method are shown in Figure (2 and 3) for 

10 % of the uncertainty of the parameters, the sensitivity analysis was run 10000 

times at the start of fructification (40 DAT) and at the end of the crop cycle (119 

DAT) for the HortSyst model. The parameters with more influence in the model 

are listed in Table 4. The sum of the first order (main effect) for PTI was (0.95) 

and the sum of total indices was 1.01; for DMP (1.00 and 1.00); for Nup (1.08 

and 0.99); for LAI (1.01 and 1.00) and for ETc were (0.98 and 1.00) respectively. 

At the end of crop growth (111 DAT) the sum of the first order for PTI was 0.96; 

DMP = 0.92; Nup = 0.99; LAI = 1.04, and for ETc = 0.93, and total sensitivity 

indices for PTI was 1.00; DMP = 1.02; Nup = 1.01; LAI = 0.99, and for ETc = 

1.00 in the fructification stage was not clear the existence of interaction between 

parameters, but for the second stage the values 𝑆𝑇𝑖 > 𝑆𝑖 .  

In Figure (4 and 5) are shown the indices for 20% of uncertainty of the 

parameters for 10000 simulations at the start of the fructification and at the end 

of growth, in both cases the most important parameters were the same with 

uncertainty of 10% of the parameters, which varied in order of importance; these 

changes were most evident for 40 DAT, the most important parameters in 

descending order are shown in Table 4. When the fructification began the sum 

of the first order effects and the total indices were for PTI (1.08, 1.04); DMP 

(1.08, 1.04); Nup (0.99, 1.05); LAI (1.02, 1.05) and ETc (1.00, 1.06). The 

analysis in the day 119 after growth with 20% of uncertainty, the parameter 𝑑 

(crop density) became more important than 𝑐1 for ETc output, the other 

parameters kept their order of importance as when 10% of uncertainty was 

applied. In case of 119 DAT the sum of the first order effects and the total 

indices were for PTI (0.90, 1.00); DMP (0.91, 1.01); Nup (0.95, 1.02); LAI (0.99, 

1.00), and ETc (0.96, 1.02). When the sensitivity analysis was carried out with 

an uncertainty of 10% at 40 DAT and 111 DAT the sum of total sensitivity 

indices for the most important parameters (∑𝑆𝑇𝑖) was slightly higher than 1 but 

was not conclusive to say that the model is non-additive. Nevertheless, with the 

20% of uncertainty, the sum of total indices for all output response for both 
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stages of crop were different of 1, so the model was non additive, this also was 

checked with the sum of the first order effects 𝑆𝑖 <1 according to Saltelli et al. 

(2008).  

When the uncertainty of the parameters was increased to 20% the interaction 

between parameters was clearer because of all output variables 𝑆𝑇𝑖 > 𝑆𝑖, either 

for the beginning of the fructification or at the end of the crop cycle. The 

sensitivity indices also were estimated taking into account the daily integration of 

each outputs variables until the end of crop cycle with 20% of uncertainty, the 

results were different in the values of the indices of some parameters (Figure 6) 

in comparison when two specific stages were considered in the analysis, in this 

analysis some parameters changed their influential for example, for PTI and 

DMP,  𝑇𝑜𝑏 and 𝑅𝑈𝐸 decreased their indices values and the rest of the 

parameters increased, the parameter 𝑐2  increased the magnitude of its indices 

for Nup, LAI and ETc. In the sensitivity analysis run in the two-stages of growth 

was observed that at the beginning of the fructification a greater number of 

parameters were more important than at the end of the crop growth for 10% and 

20% of variation of the parameters (Table 4), these indicated that the 

parameters changed over time (Figure 7,8,9), some of them increased in 

importance and other decreased, for example the parameters  𝑇𝑜𝑏 increased its 

importance in PTI, 𝑅𝑈𝐸 in DMP; 𝑎  and 𝑏 in Nup; 𝑐1  in LAI and, 𝐴 and 𝐵𝑑 in ETc, 

two of the parameters that decreased its importance with the growth and 

development of the crop was 𝑐2  in (LAI, ETc, and DMP); 𝑘 in all outputs, this 

temporal variation were also reported by López et al. (2012) with NICOLET 

model for lettuce and SUCROS model applied to husk tomato (López et al., 

2014), also Wang et al. (2013) showed this variation along the crop growth and 

the variation with the increase of the uncertainty of the parameters for WOFOST 

model applied for corn crop. 

The cardinal temperatures 𝑇𝑚𝑎𝑥,  𝑇𝑚𝑖𝑛,  𝑇𝑜𝑏, and  𝑇𝑜𝑢, Figures (2, 3, 4, 5) were 

influential on the performance of the model, particularly at the beginning of the 

fructification, however, these parameters were not selected for the parameter 

estimation technique, because, these were defined for tomato crop according to 
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Chu et al. (2009), Peet and Welles (2005), Soltani and Sinclair (2012) which 

were obtained by experimentation, other parameters as 𝑘 (extinction coefficient) 

and 𝑑 (crop density) were also not considered, though showed high sensitivity in 

the analysis, because the 𝑘 parameter could be measured with a ceptometer 

and the density of the crop (𝑑) was defined before setting the experiment. 

During this analysis was found that these two parameters are the most sensible 

in all outputs, because of these are strongly related to the light interception and 

this concept was used to compute the DMP, LAI, and ETc and therefore the Nup 

that depends on DMP, the effect of these parameters were discussed by De 

Reffye et al. (2009) who say that limitations occur for light interception when 

density is low because the expression of light interception assume a 

homogeneous distribution of leaves.  

Therefore, the parameters that finally were considered for their calibration were;  

𝑅𝑈𝐸, 𝑎, 𝑏, 𝑐1 , 𝑐2, 𝐴, 𝐵𝑑, 𝐵𝑛 and, 𝑃𝑇𝐼𝑖𝑛𝑖. 𝑅𝑈𝐸 parameter explains the quantity of 

carbon assimilated converted to total dry biomass, therefore, was important for 

DMP and Nup because both variables are correlated. For models with the light-

use efficiency approach this parameter and 𝑘 become more important as was 

found for CERES-maize model (DeJonge et al., 2012) and WOFOST model 

studied by Dzotsi et al. (2013), SALUS model for maize, peanut and cotton 

reported by Wang et al. (2013), and AZODYN for wheat crop (Makowski et al. 

2006), all of them found higher values of 𝑆𝑇𝑖 and 𝑆𝑖  for 𝑅𝑈𝐸 and 𝑘. The 

parameters 𝑎  and 𝑏 are important in the quantification of nitrogen uptake, the 

increasing of the indices of these two parameters and 𝑅𝑈𝐸 from the days 40 

after growth to the end of the crop are explained with the increasing of the slope 

of the exponential growth curve of the total dry matter production due to the 

fruits filling and this fact increased the demand for nitrogen by the crop. 𝑐1 and 𝑐2 

explain the expansion of area foliar, the indices for 𝑐2 decrease over the time 

due to the LAI reach the maximum value for LAI of the crop (the plateau of the 

curve of this variable was reached) however, 𝑐1 raised its importance over the 

time. On the other hand, 𝐴, 𝐵𝑑 and 𝐵𝑛 have an effect on the radiation and VPD 

in the estimation of the crop transpiration, the second and third parameters were 
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not significant in this analysis carried out with the data of spring-summer, this 

similar result was found by Sánchez et al. (2008), however, these authors found 

that for autumn-winter season become important, for this reason, were 

considered as a significant parameters, the parameter 𝑃𝑇𝐼𝑖𝑛𝑖 (one of the two 

initial condition) did not have high values for 𝑆𝑇𝑖 and 𝑆𝑖, but we realized that it 

improved the performance of the calibration of the other selected parameters. 

Since the values 𝑆𝑇𝑖 − 𝑆𝑖 are a measured of the participation of the parameter 𝑋𝑖 

in interaction with another factor (Saltelli et al., 2008), considering the 20% of 

uncertainty of the parameters at the end of the crop growth these values were 

calculated for all parameters selected for the parameter estimation, so the 

difference between two indices were for 𝑅𝑈𝐸 (0.004), 𝑎 (0.010), 𝑏 (0.015), 𝑐1  

(0.004), 𝐴 (0.010), 𝐵𝑑 (0.01)  only the parameters that did not have interaction 

were  𝑐2 and 𝑃𝑇𝐼𝑖𝑛𝑖, 𝐵𝑛. 
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Figure 6 .2 Sensitivity indices estimated using Sobol’s method for PTI, DMP, 
Nup, LAI and ETc for 10% of parameters variation after 40 days of 
growth.   
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Figure 6 .3 Sensitivity indices estimated using Sobol’s method for PTI, DMP, 
Nup, LAI and ETc for 10% of parameters variation at the end of 
growth cycle (119 DAT).   
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Figure 6 .4 Sensitivity indices estimated using Sobol’s method for PTI, DMP, 
Nup, LAI and ETc for 20% of parameters variation after 40 days of 
growth.   
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Figure 6 .5 Sensitivity indices estimated using Sobol’s method for PTI, DMP, 
Nup, LAI and ETc for 20% of parameters variation at the end of 
growth cycle (119 DAT).   
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Figure 6 .6 Sensitivity indices estimated using Sobol’s method for PTI, DMP, 
Nup, LAI and ETc for 20% of parameters variation integrating the 
daily values of the outputs until the end of growth cycle (119 DAT).   
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Figure 6 .7 Temporal variation of the sensitivity indices estimated using Sobol’s 
method for PTI, DMP for 20% of parameters variation. 

 

Figure 6 .8 Temporal variation of the sensitivity indices estimated using Sobol’s 
method for Nup, LAI for 20% of parameters variation.   
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Figure 6 .9 Temporal variation of the sensitivity indices estimated using Sobol’s 
method for ETc for 20% of parameters variation. 

 
Table 6.4 Sensitive HortSyst input parameters in order of decreasing of total and 

first order Sobol’s sensitivity (𝑺𝑻𝒊 and 𝑺𝒊) for two stage of the tomato 
crop. 

Output 

response 

At the beginning of 

fructification 

At the end of the crop 

growth 

 Parameters (10% of variation) 

PTI Tob, c1, d, k, c2, Tou Tob, Tmin 

DMP c1 , d, k, c2, RUE RUE,  c1, d, k 

Nup d, c1, c2, k, a, RUE a, b,  RUE 

LAI c1, d, c2, Tob, k c1, d, c2 

ETc c1, d, c2, k c1, A, d, c2, k 

 Parameters (20% of variation) 

PTI k, d,  c1, c2, Tob, Tou, Tmax Tob, Tmin 

DMP k, d, c1, c2, RUE    RUE,  c1, d, k 

Nup k, d, c1, c2, a, RUE a, b,  RUE 

LAI d, c1, c2, k, Tob d, c1, c2 

ETc d, c1, c2, k d, c1, A, c2, k 

6.3.2 Calibration of HortSyst model by Differential evolution (DE) 

The HortSyst crop growth model was calibrated by solving the minimization 

problem, which can closely match the simulated and observed data of the 

tomato crop. Nine parameters were estimated and the performances of the 

model during the calibration for autumn-winter and spring-summer are shown in 

Figure 11 and 12, the values of the parameters calibrated and the PTI and PTI 

vs LAI Michaelis-Menten behavior are shown in Figure 10. The statistics 

goodness of fit of the model are presented in Table 4 and 5. For both seasons 



 

129 

the features of In DE method were: population size was 30, the number of 

parameter estimated was 9, accuracy of 1e-8, generation number of 1000, the 

minimum values were taken from the mean of 25 runs and the strategy of 

DE/RAND/1/bin algorithm was implemented during the analysis (Chakraborty, 

2008; Das and Suganthan 2011; Price, Storn et al., 2005). F is a constant which 

affects the differential variation between two solutions and set to 0.6 in our 

experiments, the value of the crossover rate (CR) was 0.9 which controls the 

change of the diversity of the population. The better fit according to RMSE were 

for LAI followed by Nup, DMP, and ETc for both crop season were close to zero, 

this indicates a good model effectiveness. Another fit index was the efficiency 

modeling, for all outputs were near to one, this indicated a good model 

performance according to Brun et al. (2006) and Xuan et al. (2016), with the 

values of bias found in autumn and winter, the nitrogen uptake was slightly 

underestimated  and DMP, LAI and ETc were overestimated, in case of the 

season spring and summer season LAI and DMP were underestimated and Nup 

and ETc were overestimated. Also the plots 1:1 are presented in Figure (11 and 

12) to visualize the quality of the prediction of the output responses of the 

HortSyst model n Figure 11 and 12. All the parameters were calibrated 

successfully, only the parameter Bn in the transpiration output resulted with high 

standard deviation during the autumn-winter season (Table 4), this means that it 

was very uncertain for autumn-winter, but for the spring-summer. The calibrated 

value of 𝑅𝑈𝐸 for autumn and winter was higher than found by Gallardo et al. 

(2014) and for spring and summer was closed to reported by Challa and Bakker 

(1998) and this values were different between two seasons. 𝑎  parameter was 

lower for the two crop period and 𝑏 was higher than reported by Gallardo et al. 

(2014) these calibrated values was quite similar for both season, the parameter 

𝑐1 were closer for two seasons but 𝑐2 during the spring and summer was more 

that twice than in autumn-winter, 𝐴, 𝐵𝑑 parameter was higher than found by 

Sánchez et al. (2011) either for autumn-winter and spring summer, these 

parameters to estimate ETc were different between each crop cycle. The 

HortSyst parameters calibrated using DE algorithm was closer except for 



 

130 

𝐵𝑛 parameter found by Martinez et al. (2017) who used a nonlinear least square 

method to find the correct values of the parameters for spring-summer. 

 

Figure 6 .10 PTI estimated vs measured and simulated of LAI data after 
calibration for autumn – winter, 2015 a), b) spring-summer c), d). 
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Figure 6 .11 Measured and simulated data after calibration for the DMP, Nup, 
LAI and ETc during autumn – winter, 2015. 
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Figure 6 .12 Measured and simulated data after calibration for the DMP, Nup, 
LAI and ETc during spring – summer, 2016. 

 

Table 6.5 Parameters values and standard deviations after calibration process 
by means of DE. 

Parameters Nominal values Autumn-Winter Nominal values Spring-Summer 

PTIini 0.03 0.01 (2.05e-9) 0.06 0.031 (4.58e-9) 

RUE 4.01 4.79 (3.81e-7) 3.10 2.99 (2.10e-7) 

a 7.55 5.89 (1.23e-5) 7.55 5.68 (7.34e-6) 

b -0.15 -0.19 (4.06e-7) -0.15 -0.17 (2.23e-7) 

c1 2.82 2.65 (4.02e-8) 3.07 2.97 (3.52e-8) 

c2 74.66 63.46 (1.26e-9) 175.64 167.99 (8.85e-13) 

A 0.30 0.63 (4.58e-9) 0.49 0.56 (2.40e-9) 

Bd 18.70 28.57 (1.99e-7) 11.20 15.69 (2.18e-7) 
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Bn 8.50 4.73 (4.45) 8.28 16.51 (6.13e-7) 

 

Table 6.6 Statistics of goodness of fit resulting from calibration of model for 
autumn-winter and spring-summer. 

Outputs Autumn -Winter Spring - Summer 

 Bias RMSE EF Bias RMSE EF 
DMP 0.41566 13.3133 0.9970 -1.5437 14.7602 0.9989 

Nup -0.0708 0.5004 0.9909 0.0287 0.3583 0.998 

LAI 0.0249 0.0989 0.9979 -0.0007 0.1564 0.99623 

ETc 3.6465 39.3297 0.8153 1.29181 28.206 0.9581 

6.4 Conclusions 

The global sensitivity analysis based on Sobol’s method allowed determining the 

most influential parameters in HortSyst model, the values found in the 

parameters during the calibration were the correct values for the autumn – 

winter and spring-summer season, which the quantity of radiation between two 

crop seasons were different and were reflected in the dry matter production and 

leaf area index. It was necessary the parameter estimation for each crop period. 

These parameter values could be used to simulate another greenhouse crop as 

reference values when non-limitation of water and nutrient exist. However, more 

experiments are needed to validate this model using this parameter estimated 

and also more research is needed to extend this model to another crop under 

greenhouses. 

6.5 References 

Brisson, Nadine et al. 1998. “STICS: A Generic Model for the Simulation of 
Crops and Their Water and Nitrogen Balances. I. Theory and 
Parameterization Applied to Wheat and Corn.” Agronomie 18(5–6):311–46. 

Brun, F., D. Wallach, D. Makowski, and J. W. Jones. 2006. Working with 
Dynamic Crop Models: Evaluation, Analysis, Parameterization, and 
Applications. Elsevier Science. Retrieved  

César Trejo Zúñiga, Elmer, Irineo Lorenzo López Cruz, and Agustín Ruíz 
García. 2014. “Parameter Estimation for Crop Growth Model Using 
Evolutionary and Bio-Inspired Algorithms.” Applied Soft Computing 23:474–
82.  

Chakraborty, Uday. 2008. Advances in Differential Evolution. Springer. 
Chu, Jin-Xiang, Zhong-Fu Sun, Ke-Ming Du, Qian Jia, and Shuang Liu. 2009. 



 

134 

“Establishment of Dynamic Model for the Nutrient Uptake and Development 
about Tomato in Greenhouse.” Pp. 54–58 in Crop Modeling and Decision 
Support, edited by W. Cao, J. W. White, and E. Wang. Berlin, Heidelberg: 
Springer Berlin Heidelberg.  

Cooman, A. and E. Schrevens. 2006. “A Monte Carlo Approach for Estimating 
the Uncertainty of Predictions with the Tomato Plant Growth Model, 
Tomgro.” Biosystems Engineering 94(4):517–24. Retrieved  

Cooman, A. and E. Schrevens. 2007. “Sensitivity of the Tomgro Model to Solar 
Radiation Intensity, Air Temperature and Carbon Dioxide Concentration.” 
Biosystems Engineering 96(2):249–55. 

Dai, Chunni, Meng Yao, Zhujie Xie, Chunhong Chen, and Jingao Liu. 2009. 
“Parameter Optimization for Growth Model of Greenhouse Crop Using 
Genetic Algorithms.” Applied Soft Computing Journal 9(1):13–19. 

Dai, Jianfeng et al. 2006. “A Simple Model for Prediction of Biomass Production 
and Yield of Three Greenhouse Crops.” Pp. 81–88 in III International 
Symposium on Models for Plant Growth, Environmental Control and Farm 
Management in Protected Cultivation 718. 

Das, Swagatam and Ponnuthurai Nagaratnam Suganthan. 2011. “Differential 
Evolution: A Survey of the State-of-the-Art.” IEEE Transactions on 
Evolutionary Computation 15(1):4–31. 

DeJonge, Kendall C., James C. Ascough, Mehdi Ahmadi, Allan A. Andales, and 
Mazdak Arabi. 2012. “Global Sensitivity and Uncertainty Analysis of a 
Dynamic Agroecosystem Model under Different Irrigation Treatments.” 
Ecological Modelling 231:113–25. 

Dzotsi, K. A., B. Basso, and J. W. Jones. 2013. “Development, Uncertainty and 
Sensitivity Analysis of the Simple SALUS Crop Model in DSSAT.” 
Ecological Modelling 260:62–76. 

Fang, Guancheng, Zhenzhou Lu, and Lei Cheng. 2015. “A New Methodology 
Based on Covariance and HDMR for Global Sensitivity Analysis.” Applied 
Mathematical Modelling 39(18):5399–5414. 

Gallardo, M. et al. 2011. “Evaluation of the VegSyst Model with Muskmelon to 
Simulate Crop Growth, Nitrogen Uptake and Evapotranspiration.” 
Agricultural Water Management 101(1):107–17. 

Gallardo, M., M. D. Fern??ndez, C. Gim??nez, F. M. Padilla, and R. B. 
Thompson. 2016. “Revised VegSyst Model to Calculate Dry Matter 
Production, Critical N Uptake and ETc of Several Vegetable Species Grown 
in Mediterranean Greenhouses.” Agricultural Systems 146:30–43. 

Gallardo, M., R. B. Thompson, C. Giménez, F. M. Padilla, and C. O. Stöckle. 
2014. “Prototype Decision Support System Based on the VegSyst 
Simulation Model to Calculate Crop N and Water Requirements for Tomato 
under Plastic Cover.” Irrigation Science 32(3):237–53. 

Giménez, C. et al. 2013. “VegSyst, a Simulation Model of Daily Crop Growth, 
Nitrogen Uptake and Evapotranspiration for Pepper Crops for Use in an on-
Farm Decision Support System.” Irrigation Science 31(3):465–77. 

Guzmán-Cruz, R. et al. 2009. “Calibration of a Greenhouse Climate Model Using 
Evolutionary Algorithms.” Biosystems Engineering 104(1):135–42. 

Helton, J. C., F. J. Davis, and J. D. Johnson. 2005. “A Comparison of 



 

135 

Uncertainty and Sensitivity Analysis Results Obtained with Random and 
Latin Hypercube Sampling.” Reliability Engineering & System Safety 
89(3):305–30. Retrieved  

Heuvelink, E. 1999. “Evaluation of a Dynamic Simulation Model for Tomato Crop 
Growth and Development.” Annals of Botany 83:413–22. 

Homma, Toshimitsu and Andrea Saitelli. 1996. “Importance Measures in Global 
Sensitivity Analysis of Nonlinear Models.” Reliability Engineering and 
System Safety 52:1–17. 

Janon, Alexandre, Thierry Klein, Agnès Lagnoux, Maëlle Nodet, and Clémentine 
Prieur. 2014. “Asymptotic Normality and Efficiency of Two Sobol Index 
Estimators.” ESAIM: Probability and Statistics 18(3):342–64. Retrieved  

Jones, J. W., E. Dayan, L. H. Allen, H. Van Keulen, and H. Challa. 1991. “A 
Dynamic Tomato Growth and Yield Model ( T O M G R O ).” 
AmericanSociety of Agricultural Engineers 34(April):663–72. 

Kang, M. Z., P. H. Cournède, P. de Reffye, D. Auclair, and B. G. Hu. 2008. 
“Analytical Study of a Stochastic Plant Growth Model: Application to the 
GreenLab Model.” Mathematics and Computers in Simulation 78(1):57–75. 

Katsoulas, Nikolaos, Konstantinos Peponakis, Konstantinos P. Ferentinos, and 
Constantinos Kittas. 2015. “Calibration of a Growth Model for Tomato 
Seedlings (TOMSEED) Based on Heuristic Optimisation.” Biosystems 
Engineering 140:34–47. 

Lemaire, Sébastien, Fabienne Maupas, Paul-Henry Cournède, and Philippe De 
Reffye. 2008. “A Morphogenetic Crop Model for Sugar-Beet (Beta Vulgaris 
L.).” International Symposium on Crop Modeling and Decision Support 
ISCMDS 5:19–22.  

López-Cruz, Irineo L., Abraham Rojano-Aguilar, Raquel Salazar-Moreno, and 
Rutilo López-López. 2014. “Análisis de Sensibilidad Global Del Modelo de 
Cultivos Sucros Aplicado a Tomate de Cáscara.” Revista Fitotecnia 
Mexicana 37(3):279–88. 

López-Cruz, Irineo L., Raquel Salazar-Moreno, Abraham Rojano-Aguilar, and 
Agustín Ruiz-García. 2012. “Análisis de Sensibilidad Global de Un Modelo 
de Lechugas (Lactuca Sativa L.) Cultivadas En Invernadero.” Agrociencia 
46(4):383–97. 

Makowski, David, Cédric Naud, Marie Hélène Jeuffroy, Aude Barbottin, and 
Hervé Monod. 2006. “Global Sensitivity Analysis for Calculating the 
Contribution of Genetic Parameters to the Variance of Crop Model 
Prediction.” Reliability Engineering and System Safety 91(10–11):1142–47. 

Monod, Hervé, Cédric Naud, and David Makowski. 2006. “Uncertainty and 
Sensitivity Analysis for Crop Models.” Working with Dynamic Crop Models: 
Evaluation, Analysis, Parameterization, and Applications 4:55–100. 

Morris, M. D. 1991. “Factorial Sampling Plans for Preliminary Computational 
Experiments.” Technometrics 33(2):161–74. 

Norton, John. 2015. “An Introduction to Sensitivity Assessment of Simulation 
Models.” Environmental Modelling and Software 69:166–74. 

Ogejo, J.Arogo, R. S. Senger, and R. H. Zhang. 2010. “Global Sensitivity 
Analysis of a Process-Based Model for Ammonia Emissions from Manure 
Storage and Treatment Structures.” Atmospheric Environment 



 

136 

44(30):3621–29. 
Peet, M. and G. Welles. 2005. “Greenhouse Tomato Production.” Heuvelink, 

E.P. (Ed.), Crop Production Science. Horticulture Series. Retrieved  
Pianosi, Francesca, Fanny Sarrazin, and Thorsten Wagener. 2015. A Matlab 

Toolbox for Global Sensitivity Analysis. 
Price, Kenneth, Rainer M. Storn, and Jouni A. Lampinen. 2005. “Differential 

Evolution: A Practical Approach to Global Optimization (Natural Computing 
Series).” The Journal of Heredity 104:542. 

Price, Kenneth V, Rainer M. Storn, and Jouni A. Lampinen. 2005. Differential 
Evolution: A Practical Approach to Global Optimization. Retrieved  

Reffye, P., E. Heuvelink, Y. Guo, B. G. Hu, and B. G. Zhang. 2009. “Coupling 
Process-Based Models and Plant Architectural Models: A Key Issue for 
Simulating Crop Production.” Crop Modeling and Decision Support 4:130–
47. 

Saltelli, A. et al. 2008. Global Sensitivity Analysis. The Primer. Retrieved  
Saltelli, a., T. H. Andres, and T. Homma. 1995. “Sensitivity Analysis of Model 

Output. Performance of the Iterated Fractional Factorial Design Method.” 
Computational Statistics and Data Analysis 20(4):387–407. 

Saltelli, a., S. Tarantola, and F. Campolongo. 2000. “Sensitivity Analysis as an 
Ingredient of Modeling.” Statistical Science 15(4):377–95. 

Saltelli, a, S. Tarantola, and K. P. S. Chan. 1999. “A Quantitative Model-
Independent Method for Global Sensitivity Analysis of Model Output.” 
Technometrics 41(1):39–56.  

Saltelli, Andrea et al. 2010. “Variance Based Sensitivity Analysis of Model 
Output. Design and Estimator for the Total Sensitivity Index.” Computer 
Physics Communications 181(2):259–70. 

Saltelli, Andrea, Marco Ratto, Stefano Tarantola, and Francesca Campolongo. 
2006. Sensitivity Analysis Practice: A Guide to Scientific Models. 

Sánchez, J. A., F. Rodríguez, J. L. Guzmán, M. Berenguel, and M. D. 
Fernández. n.d. “Modelado de La Transpiración de Un Cultivo de Tomate 
Bajo Invernadero Para El Diseño de Sistemas de Control de Riego.” 

Sánchez, J. A., F. Rodríguez, J. L. Guzmán, M. Ruiz Arahal, and M. D. 
Fernández. 2011. “Modelling of Tomato Crop Transpiration Dynamics for 
Designing New Irrigation Controllers.” Pp. 729–38 in Acta Horticulturae, vol. 
893. 

Shibu, M. E., P. A. Leffelaar, H. van Keulen, and P. K. Aggarwal. 2010. 
“LINTUL3, a Simulation Model for Nitrogen-Limited Situations: Application 
to Rice.” European Journal of Agronomy 32(4):255–71. 

Sobol, I. M. 1993. “Sensitivity Analysis for Nonlinear Mathematical Models.” 
Mathematical Modeling & Computational Experiment 1(4):407–14.  

Sobol, I. M. 2001. “Global Sensitivity Indices for Nonlinear Mathematical Models 
and Their Monte Carlo Estimates.” Mathematics and Computers in 
Simulation 55(1–3):271–80. 

Soltani, A. Sinclair, Thomas. R. 2012. Modeling Physiology of Crop 
Development, Growth and Yield.  

Steiner, Abram A. 1984. “The Universal Nutrient Solution.” in 6. International 
Congress on Soilless Culture, Lunteren (Netherlands), 29 Apr-5 May 1984. 



 

137 

ISOSC. 
Stockle, C. O., M. Donatelli, and R. Nelson. 2003. “CropSyst, a Cropping 

Systems Simulation Model.” European Journal of Agronomy 18:289–307. 
Storn, Rainer and Kenneth Price. 1997. “Differential Evolution – A Simple and 

Efficient Heuristic for Global Optimization over Continuous Spaces.” Journal 
of Global Optimization 11(4):341–59.  

van Straten, G. 2008. “What Can Systems and Control Theory Do for 
Agricultural Science?” Automatika 49(3–4):105–17.  

Tei, F., P. Benincasa, and M. Guiducci. 2002. “Effect of n availability on growth, 
n uptake, light interception and photosynthetic activity in processing 
tomato.” Pp. 209–16 in Acta Horticulturae. International Society for 
Horticultural Science (ISHS), Leuven, Belgium.  

Vazquez-Cruz, M. A. et al. 2014. “Global Sensitivity Analysis by Means of 
EFAST and Sobol’ Methods and Calibration of Reduced State-Variable 
TOMGRO Model Using Genetic Algorithms.” Computers and Electronics in 
Agriculture 100:1–12.  

Wallach, Daniel, David Makowski, James W. Jones, and François Brun. 2014. 
Working with Dynamic Crop Models.  

Wang, Jing, Xin Li, Ling Lu, and Feng Fang. 2013. “Parameter Sensitivity 
Analysis of Crop Growth Models Based on the Extended Fourier Amplitude 
Sensitivity Test Method.” Environmental Modelling & Software 
48(October):171–82.  

Williams, J., C. Jones, J. Kiniry, and D. Spanel. 1989. “The EPIC Crop Growth 
Model.” Transactions of the ASAE USA 32:497–511.  

Wu, Qiong-Li, Paul-Henry Cournède, and Amélie Mathieu. 2012. “An Efficient 
Computational Method for Global Sensitivity Analysis and Its Application to 
Tree Growth Modelling.” Reliability Engineering & System Safety 107:35–
43. 

Wu, Qiongli, Paul-henry Courne, and Paul-Henry Cournède. 2014. “A 
Comprehensive Methodology of Global Sensitivity Analysis for Complex 
Mechanistic Models with an Application to Plant Growth.” Ecological 
Complexity.  

Xu, R. et al. 2010. “A Photothermal Model of Leaf Area Index for Greenhouse 
Crops.” Agricultural and Forest Meteorology 150(4):541–52. 

Xuan, Shouli et al. 2016. “Parameter Estimation for a Rice Phenology Model 
Based on the Differential Evolution Algorithm.” Pp. 224–27 in Functional-
Structural Plant Growth Modeling, Simulation, Visualization and 
Applications (FSPMA), International Conference on. IEEE. 

 

 

 

 

 



 

138 

7. A DECISION SUPPORT SYSTEM FOR FERTIGATION 
MANAGEMENT BASED ON A GROWTH AND 

TRANSPIRATION MODEL FOR GREENHOUSE-GROWN 
TOMATOES 

 
A. Martinez-Ruiz1*, I.L. López-Cruz 1, A. Ruiz-García1, J. Pineda-Pineda2 

1Agricultural Engineering Graduate Program, University of Chapingo, Chapingo, Mexico; 2Soils 
Dept., University of Chapingo, Chapingo, Mexico * Corresponding author 

(mara2883@hotmail.com) , (accepted in 23rd International Congress on Irrigation and 
Drainage, 8 al 14 de octubre de 201) 

Abstract 

Today, agriculture has the challenge of dealing with the integration of 

productivity, product quality, and environment preservation. These objectives 

are sometimes conflicting with maximum yield, which often requires the 

application of large amounts of nitrogen fertilizer, increasing the risk of nitrogen 

leaching. Growers must therefore adapt new fertilization strategies to achieve a 

desired production, and quality, but also environmental protection. Thus, it is 

valuable to develop precision irrigation and fertilization management practices 

based on temporal and spatial variability of the system by using decision support 

systems. An experiment was carried out during autumn-winter, in which a 

tomato (Solanum lycopersicom L.) crop "CID F1" was grown in a hydroponic 

system, with a density of 3.5 plants m-2. Plants were transplanted on August 21, 

2015. A HOBO weather station (Onset Computer Corporation) was installed 

inside of the greenhouse. Temperature and relative humidity were measured 

with a S-TMB-M006, and global radiation was measured with a S-LIB-M003 

sensor.  In the experiment, three plants were chosen randomly for the sample 

every ten days to measure dry matter, leaf area index, and nitrogen uptake 

accumulation. Crop transpiration was measured every minute by means of a 

weighing lysimeter located in a central row of the greenhouse. The device 

includes an electronic balance (scale capacity =120 kg, resolution ±5 g) 

equipped with a tray carrying four plants for the experiment. The recently 

developed HortSyst dynamic model, in discrete time, which predicts dry matter 

production, nitrogen uptake, leaf area index, photo-thermal time, and crop 
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transpiration can be used for nitrogen management and irrigation scheduling in 

soilless tomato culture in Mexican greenhouses. Based on this dynamic model, 

a decision support system can be developed that could be used to help 

greenhouse growers to improve their current fertigation practice. So far, the 

HortSyst model has been calibrated and evaluated for a tomato crop; however, it 

can be easily applied to other greenhouse crops.  

Keywords: DSS model, horticultural systems, irrigation programming, 

simulation model, water consumption 

7.1 Introduction 

During the last two decades, a number of decision support programs for 

horticulture have been developed by scientific institutes or commercial firms. 

Several crop-growth mathematical models for horticulture greenhouse crops 

have been developed by scientists. Depending on the primary purpose of a 

specific model, a wide variety of different modelling approaches are used. Most 

of the models have been proposed in order to simulate the influence of one or a 

few main input factors. With an increased interest on knowledge based on 

systems, the idea of developing a decision support systems came up for special 

crops based on expert systems and artificial intelligence techniques. There has 

been some hopes that it would be possible to include all relevant variables of a 

crop system, like plant nutrition, irrigation scheduling, pest control, temperature 

control, work capacity, and economy in one decision support system (Lentz, 

1998). Today, agriculture has a new challenge to deal with: the integration of 

productivity, product quality, and environmental preservation. These objectives 

sometimes conflict with maximum yield, which often requires the application of 

large amounts of nitrogen fertilizer, increasing the risk of nitrogen leaching 

(Nkoa et al., 2003). Growers must therefore adapt new fertilization strategies to 

offer production, quality, and environmental protection. Thus, it is valuable to 

develop precision irrigation and fertilization management practices based on 

temporal and spatial variability of the crop system (Chen et al., 2015) by using  a 

decision support system. Under fertigation conditions there are some questions 
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related to the distribution of the fertilization dose during the crop cycle, according 

to its demands and depending on its different phonological stages. The 

nutritional demand can be estimated according to the water requirements 

through the cumulative curve of consumptive use (transpiration), whose 

temporal behavior is closely related to the  development of the crop (Alonso et 

al., 2003). On the other hand, the crop growth is calculated as a function of the 

production of biomass (dry weight accumulation ) ( Li et al., 2009; Shibu et al., 

2010; Stockle et al., 2003, Gallardo et al., 2016). Then, the uptake of nutrients 

by the crop during the cycle is quantified (Bechini et al., 2006; Gallardo et al., 

2014; Le Bot et al., 1998; Nkoa et al., 2003). In soilless growing systems, the 

reservoir of water and nutrients in the root zone is limited. It follows that it is 

necessary to synchronize plant water demand in the short term, avoiding 

deficiency or salinization in the growth medium. Thus, mathematical models for 

transpiration depending on greenhouse climate have been developed, 

parameterized, and validated and these models have been probed as an 

accurate irrigation method for cucumber and tomato soilless culture for saving 

water. Because of the increasing areas under irrigation and the high water 

requirements of crops (which consume around 70% of water available to human 

beings). The scarcity of water resources is leading to increasing controversy 

about the use of water resources by agriculture and industry, for direct human 

consumption, and for other purposes. Such debate could be alleviated by 

improving crop water use efficiency, so that increasing water use efficiency of 

crops is becoming a main goal for agriculture and food security goals. 

Nowadays, water and nutrients supply of greenhouse crops is mainly based on 

time or in the integration of solar radiation, which means that crop transpiration 

and nutrient uptake is not taken into consideration. It seems that by taking into 

consideration crop transpiration prediction and nutrient dynamics in the plant, a 

more efficient method for irrigation can be devised. The goal of this work is to 

carry out the calibration of the HortSyst model, which predicts dry matter 

production, nitrogen uptake and crop transpiration for the autumn-winter season 

and to propose a decision support system tool based on this model for irrigation 



 

141 

scheduling and nitrogen concentration supply for a tomato crop cycle under 

greenhouse.   

7.2 Material and methods 

7.2.1 Experimental setup 

The experiment was carried out in a research facility located at the University of 

Chapingo, Mexico (20° 19’ N, 98° 53’ W, and 2240 m) during the 2015 autumn-

winter season. The research was carried out in a chapel type glass greenhouse 

with dimensions of 8 m x 8 m and a north–south orientation. A tomato crop 

(Solanum lycopersicom L.) "CID F1" was grown in a hydroponic system. Plastic 

bags with a capacity of 10 liters were used, which were filled with "tezontle" 

(volcanic rock) substrate with a density of 3.5 plants m-2. Tomato plants were 

transplanted on August 21, 2015. A drip irrigation systems was used, with a 0.4-

m spacing between emitters; the emitters discharge rate was 8 L h-1. The 

nutrient solution was prepared according to (Pineda et al., 2011; Steiner, 1961), 

where macronutrient concentration (me L-1) was as follows: NO3
-:12, H2PO4

-:1.5, 

K+:7.5, Ca2+:9, Mg2+:4: SO4
2-:7, and micronutrient concentration (mgL-1) was 

Fe2+:2, Mn2+:1, Zn2+: 0.2, Cu2+:0.1. 

7.2.2 Climatic variable data measurements  

A HOBO weather station (Onset Computer Corporation) was installed inside the 

greenhouse. Temperature and relative humidity were measured with an S-TMB-

M006 model sensor placed at a height of 1.5 m. Global radiation was measured 

with an S-LIB-M003 sensor located 3.5 m above the ground. Both sensors were 

connected to a U-30-NRC datalogger, which recorded data every minute. All 

data were taken from the central rows of the greenhouse.  

7.2.3 Crop variable data measurements 

In the experiment, three plants were chosen randomly for sampling every ten 

days to measure dry matter, nitrogen uptake accumulation and leaf area index. 

Plants were dried out for 72 h at 70 °C. And nitrogen was determined by the 
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Kjeldahl method (Chapman, and Pratt, 1961). The leaf area Index was 

determined by nondestructive and destructive methods consisting in taking four 

plants randomly in order to get measurements of the width and length of the 

plant leaves and the total leaf area was measured using a plant canopy analyzer 

LAI-3100 (LICOR, USA). From the measurements, nonlinear regression models 

were fitted in order to estimate this variable. The crop transpiration rate was 

measured every minute by means of a weighing lysimeter located in a central 

row of the greenhouses. The device includes an electronic balance (scale 

capacity =120 kg, resolution ±5 g) equipped with a tray carrying four plants. The 

weight loss measured by the electronic balance was assumed equal to the crop 

transpiration. 

7.2.4 HortSyst model description 

The dynamic equations and main modifications are given as follows: 

PTTkPTTkPTT  )()1(                          (1) 

DMPkDMPkDMP  )()1(                                       (2) 

upupup NkNkN  )()1(                                          (3) 

  PARi
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fkPARiTTkPTT 







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
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24
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                       (4) 

where PTT  )( 12  dmMJ is the photo-thermal time (Dai et al., 2006; Xu et al., 

2010), DMP ( 2mg ) is the dry matter production and 
upN  ( 2mg ) is the Nitrogen 

crop uptake. The increment of the photo-thermal time PTT )( 12  dmMJ is 

calculated as the product of the daily normalized daily thermal time by the 

intercepted daily PAR by the crop canopy, k  is daily and i is hourly simulation. 

In contrast to the cumulative thermal time )(CTT , which was used in the 

VegSyst model (Gallardo et al., 2014), in the HortSyst model, the photo-thermal 

time was used (Dai et al., 2006; Xu et al., 2010). The normalized thermal time (

TT , °C) is defined as the ratio of the growth rate under conditions of actual and 
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optimum temperature conditions (Soltani and Sinclair, 2012; Wang et al., 2013; 

Xu et al., 2010): 

𝑇𝑇 =

{
 
 

 
 
0 (𝑇𝑎 < 𝑇𝑚𝑖𝑛)
(𝑇𝑎 − 𝑇𝑚𝑖𝑛)/(𝑇𝑜𝑏 − 𝑇𝑚𝑖𝑛) (𝑇𝑚𝑖𝑛 ≤ 𝑇𝑎 < 𝑇𝑜𝑏)
1 (𝑇𝑜𝑏 ≤ 𝑇𝑎 ≤ 𝑇𝑜𝑢)
(𝑇𝑚𝑎𝑥 − 𝑇𝑎)/(𝑇𝑚𝑎𝑥 − 𝑇𝑜𝑢) (𝑇𝑜𝑢 < 𝑇𝑎 ≤ 𝑇𝑚𝑎𝑥)
0 (𝑇𝑎 > 𝑇𝑚𝑎𝑥)

                                                   (5) 

where aT , minT =10 oC, 
maxT 35 oC, obT =24 oC, ouT =27 oC are the air, top lower, 

top upper, optimum minimum and optimum maximum, and temperature for crop 

growth, respectively.  

gRkPAR  5.0)(                                                                                                                        (6)  

where Rg (MJ m-2 d-1) is the daily global radiation above the crop and 

(parameter) is PAR fraction of
gR . 

)(kPARfRUEDMP PARi                          (7) 

where RUE (dimensionless) is the parameter radiation use efficiency parameter. 

Another major difference between VegSyst and HortSyst is the calculation of the 

fraction of daily intercepted PAR ( PARif  ) by using the exponential function 

instead of very complex light interception functions (Gallardo et al., 2014). 

 ))(exp(1 kLAIkf PARi                              (8) 

where k is the extinction coefficient. Daily Leaf Area Index was modeled in 

HortSyst model using the photo-thermal time concept (Dai et al., 2006; Xu et al., 

2010). It is worthwhile to mention that LAI is not modelled in the VegSyst model 

(Gallardo et al., 2016).  
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where LAI, the leaf area index (
2m 2m ), 1c , 2c  are model parameters, d is the 

density of planting in the greenhouse. 

)(
100

)(%
kDMP

kN
Nup                                         (10) 

The Nitrogen content is calculated by the following equation (Le Bot et al., 1998; 

Tei et al., 2002): 

)()(% kDMPakN b                           (11) 

where 𝑎 and 𝑏 are calibration parameters obtained from experimental data. In 

contrast to the VegSyst model, the transpiration model developed by (Baille et 

al., 1994; Martínez et al., 2012; Medrano et al., 2011) was incorporated in the 

HortSyst model.  
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1
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iETckETc                                                                                                                 (12) 

    ),()()()())(exp(1 ndext BiVPDkLAIiRgkLAIkAiETc                                          (13) 

where )1( kETc  ( 12  dmkg ) is the daily accumulated transpiration,  )(iETc (

12 min15 mg ) is the hourly transpiration rate, VPD is the vapor pressure deficit 

and A  (dimensionless) refers to the radiative parameter; and dB , nB  (
12 kPaWm

) are parameters of the aerodynamic term of equation (13) for day and night, 

respectively. Table 1 shows all the calibrated parameters of the HortSyst model. 

HortSyst model is a potential growth crop model. The HortSyst model was 

programed in Matlab environment. 

7.2.5 Calibration and measuring of goodness of fit 

An appropriate method to perform model calibration is the nonlinear least 

squares estimation (Brun et al., 2006). A parameters vector 𝑝 minimize the sum 

of square errors. 

𝑝̂ = argmin 𝐽 (𝑝)                                                                                               (14) 



 

145 

𝐽(𝑝) = ∑∑(𝑦̅ℎ(𝑡𝑖, 𝑝) − 𝑦ℎ(𝑡𝑖)

𝑀

𝑖=1

𝐿

ℎ=1

)2                                                                                       (15) 

where 𝑦̅ℎ(𝑡𝑖, 𝑝) is the simulated output, in time 𝑡𝑖 , 𝑦ℎ𝑗(𝑡𝑖) is the measurement 𝑦ℎ 

in time 𝑡𝑖, 𝐿 is the number of outputs, M is the number of measurements, 𝑝 is the 

parameters set of calibration and 𝑝̂ is the parameter that reduces 𝐽(𝑝) to a 

minimum. 

The performance of the two models was evaluated using the root mean squared 

error (RMSE) and the mean absolute error (MAE), and statistics bias (BIAS) was 

defined as follows (Brun et al., 2006): 
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where N is the number of measurements, iY   is the measured value for situation 

i and iŶ is the corresponding value predicted by the model. 

7.3 Resuts and discussion 

7.3.1 Model calibration results 

Figures 1 and 2 show the output variables of dry matter production, nitrogen 

uptake, transpiration, and leaf area index in a glass greenhouse during autumn-

winter, 2015.  Valdés et al. (2014) report results closer for DMP using the STICS 

model, but higher values for nitrogen uptake (20 gm-2) and similar values for 

transpiration according to Gallardo et al. (2014). These figures show that all 

variables simulated by the model have a good fit against the measurements. 

The estimated parameter values are the following: for dry matter production a 

value of RUE (4.65 g MJ-1 ) was obtained, which is a value slightly higher than 

those reported by Gallardo et al. (2014) but lower than that (3 g MJ-1), reported 
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by Challa and Bakker (1999). In case of nitrogen uptake, its parameters resulted 

with values of the a  coefficient of 4.8. This value is lower than the value of 

7.559 found by Gallardo et al. (2014), slightly higher than what was found by Tei 

et al. (2002b), and closer to the value of 4.53 reported by Tei et al. (2002a) and 

Valdés et al. (2014) for tomato. Theb coefficient value was -0.1488, which is 

closer to the value reported by Gallardo et al. (2014) but is about half to the 

value found by Tei et al. (2002a, 2002b) and Valdés et al. (2014). Likely, these 

differences are due to the fact that their research was carried out in soil 

production. For crop transpiration, the parameter A  value was 1.1848, Bd  

1.369 × 10−6and Bn  24.2374. In the case of LAI, the coefficient values were c1 

2.7974 m2 and c2 74.2475. It is worth mentioning that for tomato LAI, Wang et 

al. (2017) and Xu et al. (2010) found that this approach generates better results 

on LAI dynamic estimation than using node development (Bacci et al., 2012; H. 

Wang et al., 2017). 

The best statistics results (Table 1) were obtained for LAI (RMSE, 0.10 m2m-2) 

followed by Nup (0.53 gm-2), ETc (1.89 kgm-2) and finally by DMP (13.59 gm-2). 

However, the last two variables, the simulated and measured values, represent 

larger numerical values versus Nup and ETc, so taking this detail into account 

the best adjustments actually correspond to ETc and DMP. According to BIAS 

statistics, the results for DMP (-2.19) and ETc (0.46) were higher than Nup (-

0.08) and LAI (-0.03), which means that the model slightly overestimates the 

DMP variables and slightly underestimates the ETc with respect to the 

measured data.  

Table 7.1 Statistics of goodness of fit resulting from calibration of model 

Output 
variables 

BIAS MAE RMSE 

DMP -2.19 11.85 13.59 

Nup -0.08 0.48 0.53 

ETc 0.46 1.67 1.89 

AI -0.03 0.09 0.10 
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Figure 7 .1 Time course of the simulated and measured values of dry matter 
production a) and nitrogen uptake b) of a greenhouse tomato crop 
grown in Chapingo, Mexico, for autumn-winter, 2015. 

 

 

Figure 7 .2 Time course of the simulated and measured values of crop 
transpiration, a) and leaf area index, b) of a greenhouse tomato crop 
grown in Chapingo, Mexico, for autumn-winter, 2015. 

7.3.2 Irrigation scheduling 

The model, besides predicting the daily transpiration, also predicts transpiration 

every 10 min, 15 min, 30 min or every hour, depending on the frequency of the 

water supply. In case  it is used in crops in soilless culture (Martínez et al., 

2012), it is advisable to use the model for simulated values every 10 or 15 min. 

As an example of the simulation of the transpiration variable for every 15 

minutes, Figure 3 shows thirteen simulated days with sunny and cloudy days. 

The simulated daily values of transpiration cannot be used to schedule the 

irrigation events in hydroponic systems. Since in these systems the irrigations 
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are applied with a high frequency and a low flow, it is necessary to obtain the 

simulated values for these variables with shorter time intervals. In order to 

devise a proposal in the management of irrigation for hydroponic crops, as 

mentioned by Wang et al. (2017), who intended to obtain a transpiration model 

to implement greenhouse automatic water management (Massa et al., 2011; 

Sigrimis et al, 2001), based on knowledge of the crop water demand combined 

with automatic irrigation technology, two simulated days of transpiration were 

chosen: a cloudy day with low transpiration (Figure 4) and a sunny day with high 

transpiration (Figure 5). In the first case, two values of volume were specified as 

setpoints to be replenished at each irrigation event, 120 mL and 150 mL to 

reach the container capacity, resulting in three irrigations and four irrigations, 

respectively. In case of the sunny days, 250 mL and 400 mL setpoints were 

considered, which resulted in 11 irrigations and 7 irrigations, respectively. The 

hours in which these irrigations resulted are presented in Table 2. When the 

accumulated transpiration has reached the setpoints between 8:00 pm and 

07:00:00 am of the next day, the first irrigation should be fixed at 07:00:00 am 

for the next day, and after that the model will continue quantifying the 

transpiration. 

 

Figure 7 .3 Results of simulation model for crop transpiration (…...Predicted, ___ 
Measured). 
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Figure 7 .4 Transpiration for a cloudy day (left) and irrigation scheduling during 
the cloudy day (right), with LAI 1.7 

 

Figure 7 .5 Transpiration for a sunny day (left) and irrigation scheduling during 

the sunny day (right), with LAI 3.5 

Table 7.2 Irrigation management proposal for a cloudy and a sunny day. 

 IRRIGATION cloudy day sunny day 

 120 mL 150 mL 250 mL 400 mL 

R1 07:00:00 07:45:00 07:00:00 07:00:00 

R2 10:45:00 12:15:00 09:30:00 10:45:00 

R3 13:30:00 16:45:00 11:00:00 12:00:00 

R4 18:45:00   11:45:00 13:15:00 

R5     12:30:00 14:45:00 

R6     13:30:00 16:00:00 

R7     14:30:00 17:15:00 

R8     15:15:00   

R9     16:00:00   

R10     16:45:00   

R11     18:00:00   
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7.3.3 Nitrogen management 

For N management in the nutrient solution, it is necessary to know the daily 

volume of transpired water by the crop. Since N uptake is known to be directly 

correlated with crop transpiration (Gallardo et al., 2014), the model simulates 

this variable and nitrogen uptake with acceptable fit on a daily basis (Figure 1), 

so that the calculation of daily concentration of N uptake by the crop, with a 

direct calculation between these two variables simulated by the model is feasible 

to give a management recommendation (Figure 6). The management of N with 

concentrations calculated daily does not allow to do a nutrient solution for day 

requirements, because the fertilizer mixing equipment is not capable of 

preparing the nutrient solutions with that level of detail, and has not yet been 

developed, so it is necessary to take into consideration an average 

concentration in each time interval according to its rate of change during the 

evolution of crop growth. The development of the crop, for this purpose, Figure 6 

shows the temporal variation of the concentration of nitrogen dependent on 

transpiration, and three management proposals are proposed in the 

concentrations for Nitrogen (Table 3). Firstly, considering an efficiency of 100%, 

where there was no waste of water and fertilizer, would imply to steer the crop 

with zero drainage; with the second efficiency, 80% to 70%, we are taking into 

account 20% and 30% of waste. According to these proposals it is apparent that 

with the 100% and 80% efficiency the concentrations are below the values 12 

me L-1 recommended by Urrestarazu (2004) and Steiner (1961), decreasing up 

to 50% of the recommended concentration after 45 DDT and for the proposal 

with 80% efficiency, in the first 30 DDT the values in the Table 3 exceed in 3.6 

meL-1 to the recommended concentration, and after 45 DDT the values are 

lower. Thus, using concentrations simulated by the model, six levels of 

management concentrations throughout the development cycle of the crop were 

determined (Table 3). 
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Figure 7 .6 Nutrition management proposal for a tomato crop during the autumn-
winter season. 

Table 7.3 Management proposal for nitrogen supply under three efficiency levels 

 
Concentrations 
 

 
DDT 

N (me L-1) 
Efficiency 

(100%) 

N (me L-1) 
Efficiency 

(80%) 

N (me L-1) 
Efficiency 

(70%) 

1 5 10.0 12.0 15.6 

2 25 8.4 10.1 13.1 

3 35 7.4 8.8 11.5 

4 45 6.3 7.6 9.8 

5 55 5.4 6.4 8.4 

6 85 4.8 5.7 7.5 

 

7.4 Conclusions 

According to the proposal made for the management of irrigation in this 

research, the developed HortSyst model is capable of predicting transpiration 

with good precision, in order to be used for scheduling irrigations according to 

the development of the crop and the variation of climatic conditions inside the 

greenhouse; because, under cloudy or sunny conditions the model automatically 

adjusts the numbers of irrigations according to the loss of water by crop 

transpiration. For the nitrogen management, with the calculation of daily 

transpiration and nitrogen uptake (depending of the simulated biomass), the 

model can clearly determine the concentration of this element on a daily basis 

with good precision and provide useful information for decision making in 
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managing tomato crop nutrition. The mathematical structure of the HortSyst 

model is quite simple, so it is practical to use the model as a decision support 

system in the management of greenhouse-grown tomatoes. 
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8. GENERAL CONCLUSIONS 
 

 The greatest contribution of this research was the development of a 

relatively simple mathematical model with few parameters and 

considering climate variables that are commonly measured inside a 

medium technology greenhouse, the advantage of this model is that it 

has a physiological and physical support. The mathematical structure was 

also analyzed and evaluated. 

 The HORTSYST dynamic model developed and applied for tomatoes in 

Mexican greenhouses had an excellent fit to the data measured during 

the experiment and was found to have a simpler mathematical structure 

than the VEGSYST model and the predictive quality of the model using 

the literature values exceeded the model developed for Spain 

greenhouses (VegSyst). This was confirmed by comparing the values of 

the RMSE, Bias and EF statistics found in the simulation of both models, 

with experimental data for both the autumn-winter and spring-summer 

cycle. 

 The submodel that relates the leaf area index and the concept photo-

thermal coupled to the HortSyst model showed satisfactory results in the 

prediction of this variable and improved significantly in the prediction of 

dry matter production and transpiration, since the index of leaf area is 

involved directly in the calculation of these two variables. 

 The nitrogen and daily dry matter production predicted by the model were 

acceptable when were compared with the data collected during the 

experiments.  

 The Baille model for determining the transpiration of the crop used in the 

HortSyst model for irrigation management purposes was simpler 

compared to the Penman-Monteith model used in the VegSyst model and 

the predictions of this variable was better in the model HortSyst. 

 With the calibration of the model using the method of nonlinear least 

squares, it was possible to find the correct values of the parameters that 
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are involved in the mathematical structure of the model, so that the 

values of the output variables (DMP, Nup, LAI, and ETc) improved 

greatly. 

 With the methods applied for the determination of uncertainty in the 

predictions of the HortSyst model were obtained satisfactory results, 

according to which one can rely on the capacity of the model in the 

predictions of the most important variables that are linked to the 

production of the tomato crop. On the other hand, the GLUE method 

(Bayesian approach) proved to be a good tool for these types of analyzes 

since it does not only consider the simulations but also includes data 

measured to obtain the statistics that help to determine the predictive 

capacity of the model. 

 According to the proposal made for the using of the model for irrigation 

programming and nitrogen management, it was concluded that the 

HortSyst model is a fairly simple model that could be integrated into a 

decision support system to assist to the growers in the monitoring of the 

production of tomatoes in greenhouses. 

 This model could be adapted to other crops in greenhouse and of course 

could also improve considering a crop under stress for water and nutrient 

and other nutrients. 


