Calibración del contenido de humedad del suelo utilizando imágenes de satelite LANDSAT-8 y SENTINEL-2 mediante Google Earth Engine.
Calibración del contenido de humedad del suelo utilizando imágenes de satelite LANDSAT-8 y SENTINEL-2 mediante Google Earth Engine.
dc.contributor.advisor | Sánchez Cohen, Ignacio | |
dc.contributor.author | Quintana Molina, José Rodolfo | |
dc.contributor.other | Jiménez Jiménez, Sergio Iván | |
dc.contributor.other | Marcial Pablo, Mariana de Jesús | |
dc.contributor.other | Trejo Calzada, Ricardo | |
dc.date.accessioned | 2023-04-14T19:36:39Z | |
dc.date.available | 2023-04-14T19:36:39Z | |
dc.date.issued | 2023-04 | |
dc.description | Tesis (Maestría en Ciencias en Recursos Naturales y Medio Ambiente en Zonas Áridas) | |
dc.description.abstract | En la región norte de México la escasez de agua para la agricultura ha ido en aumento a causa de los bajos niveles de precipitación. En el año agrícola 2019- 2020 la superficie irrigada por el Distrito de Riego 017-Comarca Lagunera fue de aproximadamente 55.2 mil hectáreas, pese a eso el abandono de las prácticas agrícolas por la falta de agua continua vigente. Por ende, es crucial generar modelos que ayuden a la mejora del manejo de los recursos hídricos para proporcionar soluciones a los problemas agronómicos en la parte norte de México. En este sentido, el objetivo de la presente investigación es calibrar modelos [(Óptico Trapezoidal (OPTRAM) y Térmico-Óptico Trapezoidal (TOTRAM)] para estimar el contenido de humedad volumétrico del suelo de diferentes profundidades (5, 10 y 20 cm) usando índices de vegetación derivado de imágenes de satelitales Sentinel-2 y Landsat-8 utilizando Google Earth Engine (GEE). Se realizaron mediciones in-situ en tres sitios diferentes (2 de riego y uno de temporal) en diferentes fechas. Los datos de contenido de humedad del suelo (Ɵ) in-situ fueron comparados con el contenido normalizado de humedad (W) derivado de los modelos. De acuerdo con los resultados, el modelo OPTRAM mediante la combinación de las distribuciones de dos modalidades de agricultura no presentó una relación lineal positiva, a diferencia del modelo TOTRAM. Las profundidades con mayor relación lineal (W-Ɵ) se observaron a 20 cm en OPTRAM-SAVI y 10 cm en TOTRAM-MSAVI2, mostrando la mayor precisión para la estimación del contenido de humedad volumétrico en el suelo. | |
dc.description.sponsorship | Universidad Autónoma Chapingo, CONACyT | |
dc.identifier.uri | https://repositorio.chapingo.edu.mx/handle/123456789/1885 | |
dc.language.iso | es | |
dc.publisher | Universidad Autónoma Chapingo | |
dc.subject | Imágenes de satélite, agricultura, índices de vegetación, distribuciones. | |
dc.title | Calibración del contenido de humedad del suelo utilizando imágenes de satelite LANDSAT-8 y SENTINEL-2 mediante Google Earth Engine. | |
dc.type | Thesis |
Files
Original bundle
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: