Densidad de plantas de maíz en presencia de maleza con redes neuronales profundas
Densidad de plantas de maíz en presencia de maleza con redes neuronales profundas
Date
2022-11
Authors
Mota Delfin, Canek
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Autónoma Chapingo
Abstract
La densidad de población de un cultivo se puede cuantificar mediante detección
y el conteo remoto de plantas y está directamente correlacionado al rendimiento
del cultivo. La obtención precisa de esta información ayuda a los agricultores a
gestionar y controlar su producción. Sin embargo, las metodologías basadas en
imágenes aéreas aún son un reto, debido a la complejidad de las condiciones
del campo. En este contexto, se propuso el establecimiento de una base de
datos que contiene imágenes aéreas del cultivo de maíz con malezas con el
objetivo de implementar y evaluar la robustez de algoritmos de aprendizaje
profundo para la detección y conteo de plantas de maíz en tales condiciones.
Se realizaron diez misiones de vuelo, seis con una distancia de muestreo en
tierra (GSD) de 0.33 cm/píxel en etapas vegetativas de V3 a V7 y cuatro con
un GSD de 1.00 cm/píxel para etapas vegetativas V6, V7 y V8. Los detectores
comparados fueron YOLOv4, YOLOv4 Tiny, YOLOv4 Tiny 3L, y las versiones
de YOLOv5 s, m y l. Se evaluó cada detector en umbrales de intersección sobre
la unión (IoU) de 0.25, 0.50 y 0.75 en intervalos de confianza de 0.05. Para
niveles de confianza superiores a 0.35, YOLOv4 mostró mayor robustez en
la detección ante los demás modelos. Considerando la moda de 0.3 para la
confianza que maximiza la métrica F1 y el umbral IoU de 0.25 en todos los
modelos, YOLOv5s obtuvo una precisión media promedio (mAP) de 73.1 % con
una correlación R2 de 0.78 y raíz del error cuadrático medio relativo (rRMSE)
de 42 % en el conteo de plantas, seguido de YOLOv4 con mAP de 72.0 %, R2
de 0.81 y rRMSE de 39.5 %. Las detecciones más bajas en todos los detectores
se obtuvieron al evaluar las etapas vegetativas V6, V7 y V8 con GSD de 1.00
cm/píxel.
Description
Tesis (Maestría en Ingeniería Agrícola y Uso Integral del Agua)
Keywords
Imágenes aéreas, CNN, Conteo de plantas, Maíz, Maleza,
Detección